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CHAPTER 1: GENERAL INTRODUCTION 

I. Historical Background 

The major title of this dissertation, 'From first principles,' is a phrase often 

heard in the study of thermodynamics and quantum mechanics. These words 

embody a powerful idea in the physical sciences; namely, that it is possible to distill 

the complexities of nature into a set of simple, well defined mathematical laws, from 

which specific relations can then be derived. In thermodynamics, these fundamental 

laws are immediately familiar to the physical scientist by their numerical order: the 

First, Second and Third Laws. However, the subject of the present volume is 

quantum mechanics - specifically, non-relativistic quantum mechanics, which is 

appropriate for most systems of chemical interest. The first principles of this field 

are commonly expressed by an equation first written by Schrôdinger in 1926:' 

^9Y(q , f )  =  + V(q)V(q , t  )  (1.1) 

where z is the square root of negative one, h is Planck's constant divided by 2K ,  

Y(q,f) represents the system's so-called wavefunction, which is a function of space 

and time, respectively, m is the system's mass, and V is the potential energy of the 

system. There are various ways that one could 'derive' this equation or justify its 

form based on the matter-wave theories of de Broglie,2 or perhaps by using 

Heisenberg's3 famous commutation relation, [q,p] = ih 1, which first appeared in the 

paper 'Zur Qiiantenmechanihf by Bom and Jordan,4 and independently a few months 

later in Dirac's first paper on quantum mechanics.3 For our purposes here, it is 

entirely reasonable to consider Eq. (1.1) as a fundamental quantum postulate, and 

then derive our relations from it; i.e. from first principles. 

In the study of electronic structure, one usually begins from the time 

independent form of Schrôdinger's equation, since, in the absence of a time-varying 

field, the time dependence of the wavefunction is easily integrated out by separation 

of variables. Let *P(q,f) = y(q)/(t) ; then 
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ihW)^=-^lki^{q)+V{q) (,'2) 

Since both sides of Eq. (1.2) are functions of independent variables (space and time), 

each side must therefore be equal to the same constant, E. Consider the solution of 

the left-hand side (LHS): 

S = = ln/<,) ~f - /»> - '4 (13) 

such that evolution of the wavefunction is now known for all times, and is given by 

the phase factor in Eq. (1.3). The right-hand side (RHS) of Eq. (1.2) is then: 

- j^V 2 ¥(q)  + V(q)y / (q)  = Eyf (q)  => + U(q)j^(q) = E^(q) ^ ̂  

=> H\ f f (q)  =  Ei f / (q)  

where the Hamiltonian operator, H, has been defined as the sum of the kinetic and 

potential energies of the system. In Dirac notation, the time-independent 

Schrôdinger equation is written as 

H|y> = E|y> (1.5) 

In this form, it is easy to demonstrate that the expectation value of the energy 

operator, H, gives the energy, £, of the system since the wavefunction itself is 

normalizable. 

For a system of interacting electrons and nuclei, we have the following 

Hamiltonian in atomic units:6 
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H = + (1.6) 
i A mA i A riA I ;>. r , j  A 6>A 

where z indexes the electrons, A indexes the nuclei, MA is the mass of nucleus A, and 

ZA is the charge on nucleus A. This Hamiltonian can be simplified upon application 

of the Born-Oppenheimer approximation,7 which states that since the nuclei are 

approximately 1800 times as massive as the electrons, they can be considered as 

stationary points, and the electrons move in their constant potential field. In this 

case, the second term in Eq. (1.6) is zero, since the nuclei have no kinetic energy, and 

the last term is a constant, since the distance between the nuclei will not change. Eq. 

(1.6) becomes 

H?) 
^ i i A 'iA i ;>i i; 

Another technique used to simplify Schrôdinger's equation is called the 

orbital approximation. Here, the many-electron wavefunction is written as the 

product of one-electron wavefunctions: 

= ¥i(W2(2 )-"VN(N) (1.8) 

where there are N electrons in the system. The RHS is called a Hartree product,8 and 

each individual function y/t is called a spatial orbital. According to the Bom 

interpretation of the wavefunction,9 a part of the full Copenhagen interpretation of 

quantum mechanics, named after the place where Niels Bohr worked as its principal 

creator,10 the spatial probability density is given by |yr|(fT, where dt  is an element 

of volume. If the wavefunction is written as a Hartree product, then this probability 

density must be the product of the squares of the individual orbitals. According to 

probability theory, this can only be true if the probability represented by the 

individual orbitals are independent of one another. This approach is therefore 

called the independent electron model.11 If it was possible to write the Hamiltonian, 
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Eq. (1.7), as the sum of one-electron terms, then the solution of Schrôdinger's 

equation would be a simple task by separation of variables. As it is, the 

Hamiltonian depends on r~l, which means that we must know the instantaneous 

relative positions of two electrons. Therefore, the full Hamiltonian cannot be written 

as the sum of one-electron Hamiltonians; but since the utility of such a 

representa t ion  i s  c lear ,  there  has  been  cons iderable  ef for t  to  genera te  approximate  

one-electron Hamiltonians. Consider the following expression: 

where V(i )  is some average  potential resulting from the field of the other electrons in 

the system. As written, this approximate Hamiltonian does not explicitly include 

electron correlation, which is the instantaneous interaction of pairs of electrons. 

According to Pauli's Exclusion Principle,12 no two electrons in the same atom 

can have the same set of quantum numbers. Since electrons have spin quantum 

numbers of ±1/2, this means that each orbital can at most contain two electrons, one 

spin up' and the other 'spin down'. This condition arises naturally if we assume 

that the system's wavefunction is antisymmetric - i.e. the wavefunction changes sign 

when two electronic coordinates are interchanged.13 The first use of the 

antisymmetry property was by Heisenberg in his 1926 study of the spectrum of 

helium.14 Pauli's exclusion principle had been developed in the context of the old 

quantum theory, and so to incorporate this into Schrôdinger's wavefunction 

terminology, Heisenberg reasoned as follows: Let y(1,2) represent the 

wavefunction of a two-electron system, where the "1" represents the four 

coordinates of electron 1 (three spatial and one spin). Pauli said that no two 

electrons can have identical coordinates, so the most natural way to represent this 

was to write 1,2) = -t//(2,l); therefore if the two sets of coordinates are the same, 

we have y(1,1) = -iff (1,1), which must be zero.15 Note that since physical properties 

depend on the square of the wavefunction, the antisymmetry property does not 

appox (1.9) 
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directly affect them. Mathematically, we can write antisymmetry in terms of an 

opera tor ,  A i j f  which in terchanges  the  coordina tes  of  e lec t ron  i  and j :  

It is apparent from the form of the Hartree product formulation of the wavefunction 

(Eq. 1.8) that it is not antisymmetric. If, on the other hand, Eq. (1.8) is formulated as 

a determinant,16 it will be antisymmetric: 

where £ljk.„ is analogous to the three-dimensional Levi-Civita symbol:1' it is +1 for 

even permutations of ijk..., -1 for odd permutations, and zero if any index is 

repeated. (In a linear sequence abed, any single (or other odd number of) 

interchange(s) of two adjacent elements is an odd permutation. An even number of 

such interchanges results in a even permutation.) '>/*is a normalization factor. 

In keeping with the theme of 'from first principles,' and in order to lead into 

the treatment of NMR chemical shifts for closed-shell molecules in Chapter 3, let us 

consider the restricted Hartree-Fock formalism in some detail. A closed shell 

molecule  i s  one  in  which  a l l  N elec t rons  a re  pa i red  sp in-up and spin-down in  N/2 

orbitals. The wavefunction for such a system is a simple modification of Eq. (1.11): 

A/VO' 2,-~,i,j,-~,N) = y/(l,2,-~, j,i,---,N) 

— —VOL 2, N) 
(1.10) 

Z v.o'w/wfc)- (l.ii) 
i . / . * , - •  

v = '*f £ V Vt(i)a(i)¥x(j)P(j)---VsJrAM)p(N) 

(1.12) 
N 

= 'rf x Zx(i)Xz(j)-XAM) 
i . / .*,••• 

where a represents spin-up, and j3 spin-down. The spin and spatial orbitals are 

orthonormal: 
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5,/ — Jdt(l) y/t (!)</,(!) — 5,y 

jMl)a'(W = ^ (1.13) 

jdojdrO) %,"(!)%,(1) = ̂  

The normalization constant can be derived by considering the normalization of the 

total probability density: 

1 = Jy/ 'y /  d t ( l )—dT(N)  

= 'W jT £„k...XiWXïijh'XNiN) £ r,(/)*2(w)—*N(N)) (1.14) 
• l .m.n.••• j  

= 'rf2 É £ ^ Am». (%,(/)%:(/)- %^(N)|%X0%2(m) "%^(N)) 
i . / .k,  -l .m.n. • 

then since the integration is over the coordinates of all iV electrons, 

\  = 'W2  ]T 2  £ i ik-£ l mn-AlS imSh,-
i./ .k,••• l .m.n. •• 

=^2 X 4 -
i . l .k.-

(1.15) 

to leave a normalization factor of 'W = (ZV!)~1/2. 

With a full form of the wavefunction, Eq. (1.12), we can now evaluate the 

energy expectation value 

E = (yr|H|i/) (1.16) 

for a closed-shell molecule. Let the Hamiltonian, Eq. (1.7) be written as 
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H = sf-4v? - ] + SX - = I H°"(0 + H2 = H, + H, (1.17) 
i V A Ii / i />i H/ i 

This allows Eq. (1.16) to be written as 

E = (p|Hi|y) + (vf|H,|vf) (1.18) 

Consider the one-electron term first: 

(v\HM = ^ = N(v|Htflrr(l)|v) (119) 

since the electrons are equivalent and indistinguishable in both the Hamiltonian and 

the wavefunction. Using the full form of Eq. (1.12), Eq. (1.19) becomes 

i E,„„.(^(te(/)-Z«(IV)|H'°"(l)|/l(0/2(»i)-^.v(lV)) (1.20) 
™ * t . f .k.  •l .m.n. • 

Now, since the core Hamiltonian is a function of the coordinates of electron 1 only, 

and the Levi-Civita symbol ensures that no index will be repeated, choose i = I =1 

and integrate over the other electronic coordinates: 

= [(JV -1)!]-' % (%,d)|H-(l)|%,(;)^g^... 

= [(N -1)!]"' 2 efjk...<zt(l)|H~(lH*,(l)> (1.21) 

= [(N - l)!]"'a,(l)|H°"(l)|/,(l)> % 

The sum over the squares of the Levi-Civita symbol will give a factor of (N -  1) ! ,  

which leaves 
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(^(D|H^(1)|^(1)) (1.22) 

Note that we could have picked any of the i,j,k... electrons to be electron 1 in the 

derivation, so the full form of the expectation value is the sum of Eq. (1.22) over all N 

spin orbitals: 

(f|H,|v> = i(z.(l)|H'OT(l)|Z(l)) = £«„ (1.23) 
I I 

This formulation makes the integration over the coordinates of electron 1 more 

transparent. 

Now consider the expectation value of the two-electron Hamiltonian: 

(vlH
2| v)=MZZ-rM = ^"^(yl-rly) ( L 2 4> 

i />i '<i i2 

since electrons are again indistinguishable. We can then apply similar techniques as 

for the one-electron term by substituting in Eq. (1.12): 

l[(N-2)!]-' 2 (z/'toW-.MN)!—|jr,0)Z,(i«)™ZN(N)> (1.25) 
^ i.j-l .m.-- ri2 

One is now left with a case slightly different than before; the two-electron operator is 

a function of two electronic coordinates, so the permutations of electrons can either 

be identical, or they can differ by the interchange of one pair. This can be 

represented in the following way, where /, j, I, and m have been chosen to represent 

electrons 1 and 2: 
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1 T, J. r & (Z,0')Z2(/)-Z.v(N)|-J-U1(0Z2(w)-Zn(^)) m 
= -[(N-2)!j X £„V..e,mn... / ^ , (I" 

X(^il^;2^n^m2) ~~ (^il^;2^l2^ml ) 

26) 
i . j .—l.m.--

where the negative sign arises because of the interchange of I and m. One can then 

integrate over the coordinates of the other 2N -2 electrons: 

N N 

-t[(N-2) !] % X £>}k-£ lmk-

(Xi ( i )X2( j ) \—\Xx( l )X2(» 1 ) )  
rI2 

i./.*.--- I.m X(^i 1^/2^/1^12 ) (^il^/2^/2^.nI ) 

(1.27) 

Then by application of the remaining Kronecker delta functions: 

i[(N-2)!]"' 

(1.28) 

I4,..U,(1)^(2)|-U,(1)^(2)> 
*. • 12 

-14, ...Or,0>Z2<2)l7-|*, (2te(i)> 
1t.- 12 

||(/,(l)Z2(2)|-U,(l)Z!(2))-a,(l)/2(2)|J-|zl(2)^(l)) 
ZL ri2 12 

As before, we need not have chosen z, /, /, and m to designate electrons 1 and 2. To 

find the whole expectation value, we again sum over spin orbitals: 

(v|H2|v) = - (D%,(2)1—1%,(1)%,(2))-{%,(%(2)|^-|%,(%(!)) 
i./ ri2 

Z(/,(DU/i)|z,(!)>-(%,(DK(1)|%,(1)) 

(1.29) 

where the coulomb (J) and exchange (*K) operators have been defined. Or, by 

introducing a simplified notation, 
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(v|H» = ̂ i;(/,i-K„) (1.30) 
'.y 

And finally, substitution of Eq. (1.23) and Eq. (1.30) into Eq. (1.18), the total energy 

expectation value is given by 

e=Èh.,-4É(/»-k.,) <i-3i) 
•  ̂'./ 

in terms of spin orbitals. 

The energy given in Eq. (1.31) can be minimized with respect to the spin 

orbitals, subject to the restraint that the spin orbitals remain orthonormal, by 

standard methods.6 The result is a set of integro-differential equations, known as the 

Hartree-Fock equations: 

f \x )  = r \x . )  (132)  

Hartree-Fock theory is a common starting point for many more advanced theoretical 

methods, some of which are outlined in the next section. 

To finish this historical background, it should be noted that the practical 

method for solving Eqs. (1.32) is by expanding the spatial molecular orbitals as a 

linear combination of atomic orbitals, commonly called the LCAO approximation: 

V. =XC/A (1-33) 

where the ^ are typically a set of well-defined standard Gaussian functions, which 

are in turn often constructed from a linear combination of primitive Gaussian 

functions. [See Eq. (3.112).] 

4, (1.34) 
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Eq. (1.34) is an example of a Cartesian Gaussian function centered at a point fi, 

where the angular momentum of the function is represented by the x, y, and z 

components as shown. This leads to a physically odd situation where a d shell is 

represented by six functions rather than the familiar five. This is due to a linear 

dependence in the Cartesian space. Appendix A demonstrates the nature of this 

linear dependence and shows how to remove it in practice. 

A note on terminology: if a single atomic orbital is represented by a single 

function, this is termed a minimal basis set; if two functions are used per atomic 

orbital, this is called a double-zeta basis. Triple-zeta and higher basis sets have 

analogous meanings. 

Frequently, basis sets are modified by the addition of polarization functions 

of a higher angular momentum. For the case of hydrogen, which in a standard basis 

i s  represented  by  funct ions  of  s  charac ter ,  th is  would  mean adding  a  funct ion  of  p 

character, and this would allow for a distortion away from spherical symmetry, in 

the direction of any applied or environmental field. Basis sets are also augmented 

by the use of diffuse functions. Interactions like hydrogen bonding are by their 

nature weaker, and take place over larger distances. Therefore to account for these 

kinds of interactions, functions that are more "diffuse," i.e., are spread over a greater 

physical space, are required. 

II. Theoretical Methods 

This section contains brief overviews of the theoretical methods that will be 

employed or considered in later chapters. 

A. Restricted Open-Shell Hartree Fock 

In the above formulation of closed shell Hartree-Fock theory, we have 

restricted each of the occupied orbitals to contain exactly two electrons; one spin-up, 

the other spin-down. One need not impose this condition. If the spatial part of the 
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doubly occupied orbitals are restricted to the same form, but some orbitals are 

allowed to be singly occupied, i.e. open shell, this method is referred to as Restricted 

Open Shell Hartree Fock (ROHF). 

B. Unrestricted Hartree-Fock 

In unrestricted Hartree-Fock (UHF) theory, the orbitals containing 

individual electrons are allowed to vary such that the spin-up (alpha) orbitals are 

not identical to the spin-down (beta) orbitals. This allows for the representation of 

open-shell molecules, where the electrons are not necessarily paired evenly. The 

major drawback to this theory is that the resulting wavefunction is not normally an 

eigenfunction of the total spin operator, S2, which generates the value of the total 

spin squared.18 Therefore one does not obtain pure spin states from UHF theory; a 

singlet state will contain contributions from higher triplet, quintet, etc. states; this 

phenomenon is known as spin contamination. 

C. Perturbation Theory 

A common technique for approximating the electron correlation energy not 

accounted for in Hartree-Fock methods is called perturbation theory. Since the 

correlation energy can be considered a small perturbation on the Hartree-Fock 

energy, the full Hamiltonian can be written in the following way: 

H = H H F - i-AH1 (1.35) 

where H H F  is the Hartree-Fock Hamiltonian, k  is called an ordering parameter 

which varies between zero and unity, and Hl is the perturbation. By using Eq. (1.35) 

as the Hamiltonian of the system and expanding the resulting equations as a Taylor 

expansion in Â, one can set like terms equal to one another and thus obtain zeroth 

order, first order, second order, etc. corrections to the energy and wavefunction. 

This general scheme is known as many-body perturbation theory (MBPT),19 but 

when the zeroth order Hamiltonian is chosen to be the sum over Fock operators, the 
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method is known as Meller-Plesset20 (MP) perturbation theory. At second order, the 

MP and MBPT methods are equivalent.21 

D. Configuration Interaction 

The solution of the Hartree-Fock (HF) equations leads to a ground state' 

wavefunction, where in the closed-shell case outlined above, all the electrons are 

paired. In addition to this state, one can also form wavefunctions (determinants) 

that differ from the ground state by various excitations of electrons from occupied 

orbitals to vacant ones. In considering these excitations, one automatically 

incorporates electron correlation into the model. In other words, to account for 

correlation, the mental image of electrons neatly occupying specific orbitals must be 

abandoned. Let 0 be the exact many-electron wavefunction. It is then expanded in 

terms of excited-state wavefunctions: 

<& = COVhF +f^l XCvC Z, (1-36) 
v I- / Jr V ^* / zbrs V *3* / alxrst 

single excitations double excitations triple excitations 

where y/HF is the Hartree-Fock wavefunction, and the electronic excitations are from 

occupied a, b, c, etc. HF orbitals to unoccupied r, s, t, etc. HF orbitals, which are not 

re-optimized during any variation of the CI procedure. If this expansion is carried 

out to all possible excitations, full CI' leads to an exact solution of Schrôdinger's 

equation in the space spanned by the basis set. The most common applications of CI are 

single excitations (CIS) and single and double excitations (CISD). 

E. Multi-Configurational Self-Consistent Field 

An approximation to full CI is to truncate the G expansion at a given order, 

and to optimize the CI coefficients and the HF orbitals. This is known as Multi-

Configurational Self-Consistent Field (MCSCF) theory. (For a full Q expansion, 

there is no need to vary the HF orbitals.) Further, one allows the excitations to take 
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place only in a well-defined active space, which is composed of a given number of 

electrons in chemically important orbitals. This is a powerful and essential method 

when the system of interest is not well represented by a single electronic 

configuration; i.e. a single Lewis structure. Radicals, transition states, and 

compounds containing transition metals quite often require a multi-configurational 

wavefunction. 

F. Coupled Cluster Theory 

Another approximation to full CI is called coupled cluster theory, which is 

similar in some respects to perturbation theory, discussed above. Perturbation 

theory can be thought of as all types of excitations (singles, doubles, triples, etc.) 

applied to the reference wave function to a given order.18 Conversely, coupled 

cluster theory seeks to include to infinite order all excitations of a given type. Let 

the coupled cluster wavefunction be written as 

W c c = e  Vhf  (1.37) 

where the cluster operator is given by 

T = Tt + T2 h H Tn (1.38) 

Here, the T operator acts on the HF wavefunction to give all the /th excitations. 

Therefore, if Eq. (1.38) is truncated at two terms, the method is referred to as CCSD 

for coupled cluster singles and doubles. If Eq. (1.38) is truncated at the triples term, 

the method is CCSDT, etc. 

G. Density Functional Theory 

The electron correlation can also be approximately calculated by replacing 

parts of the HF Hamiltonian with terms that are functions of the electron density.22 
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This density functional theory (DFT) is based on the fact that the ground state 

electronic energy is completely determined by the electron density, given the 

appropriate functional which extracts the energy from the density function.23 The 

exact functional is not known, and so the approximate nature of this method arises 

because of the use of inexact or semi-empirical functionals. 

H. The Effective Fragment Potential Method 

This method is a major player in Chapters 2, 3, and 4, and so its general 

features will be introduced here. The version of the EFP described24 is what is 

presently implemented in the quantum chemistry package GAMESS, and will be 

referred to as EFP1; EFP2 is currently in development. The EFP1 model has been 

developed at the Hartree-Fock (HF) level of theory; that is, the three terms included 

in the model represent the type of interactions that one would expect to be 

represented at the HF level: electrostatics, polarization (dipole - induced dipole 

interactions), and exchange repulsion/charge transfer. EFP2 is a more general 

method applicable to any solvent. The general structure of each of the three terms in 

EFP1 (hereafter simply EFP) will be described in turn, after a short overview of the 

entire method is given. 

The EFP method for treating discrete solvent effects begins with the ab initio 

Hamiltonian of the "solute," which may include a small number of solvent 

molecules. The remaining solvent molecules are then treated by adding their effect 

on the system as one-electron terms in the ab initio Hamiltonian: 

H = Har + V (1.39) 

Where H is the Hamiltonian for the entire system, H A R  is the ab initio Hamiltonian of 

the "solute," or active region, and V represents the one-electron terms that describe 

the potential due to the fragment molecules. 

This potential includes ab initio - fragment, ab /m'fio(nuclei) - fragment, and 

fragment - fragment interactions, each including the three terms mentioned above 

(except for the ab initio(nuclei) - fragment interaction; there are no exchange 
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repulsion/charge transfer terms there.) Note that Eq. (4.2) deals ONLY with the ab 

initio - fragment interactions. 

K L M  
W ,S) = 2 Vf(M.s)  + 2 vrut. s )  + 2 Ctf.s) (1.40) 

I /=l m = 1 

Where fi labels the fragments, s the ab initio electronic coordinates, V*'ec is the 

electrostatic potential, V0' is the polarization, and Vrep is the exchange 

repulsion/charge transfer, k, I, and m will be discussed with each term below. 

1. The Electrostatic Term 

The electrostatic potential is represented using a distributed multipolar 

analysis (DMA) of the fragment charge densities. The total potential is given by 

2K""(/',s) (1.41) 
*=i 

where k labels the expansion points, which are defined as the atom (nuclear) centers, 

and the bond midpoints in the fragment, [e.g. for water, K=5; see Fig. (1.1)] 

Fig. (1.1) The dots indicate the location of the DMA expansion points, k. 

The above expansion, Eq. (1.41), is a point-charge model, and thus knows 

nothing of continuous three dimensional charge densities. This model works fine as 

long as the two charge densities are far apart, but as they approach one another, the 
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charge densities overlap and the nuclei become unshielded with respect to 

interactions with electrons. Therefore the actual interaction at short distances is 

always more attractive than a DMA analysis would predict. This shortfall is 

accounted for by a screening function that diminishes the magnitude of the 

electrostatic potential for small distances: (See Chapter 2 for a derivation of 

fragment-fragment charge penetration.) 

Vf( f i , s )  -> [ l - A M f ] v f ( M  ( 1 . 4 2 )  

where a and p represent adjustable parameters for the given fragment species (e.g. 

water). 

Again, the above discussion is for ab initio - fragment interactions; for inter-

fragment electrostatic interactions, simple classical expressions are used (dipole-

dipole, quadrupole-quadrupole, etc.) 

2. The Polarization Term 

The fragment molecules are polarized by the electric field of the ab initio 

molecules. This is represented by an iterative perturbation model which uses 

bonding and lone-pair localized orbital dipole polarizabilities, aat3 [centered at 

points I in Eq. (1.40), see Fig. (1.2)]. These polarizabilities are extracted from finite-

field perturbed HF calculations on isolated fragment molecules. The iterations are 

needed because a single fragment surrounded by other fragments and the ab initio 

molecule(s) will 'feel' the electric field, and an induced dipole will result in the 

fragment. 
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Fig. (1.2) The points I are located at the centroids of the localized orbitals of the 

fragment, shown here for water. The core orbital associated with the oxygen is 

hidden. 

The presence of this induced dipole has now affected the total field, which will in 

turn affect the original induced dipole. This process must be iterated mathematically 

until the entire system converges to a self-consistent polarization energy. 

3. The Exchange Repulsion/Charge Transfer Term 

The exchange repulsion between two entities with like or dislike charges is 

purely a quantum mechanical effect. This interaction between the ab initio part and 

the fragments is modeled by a one-electron term in the ab initio Hamiltonian. 

= 1 A.jf/'k""""-' (1.43) 
/ 

Here, m counts the number of repulsive points in the fragment [M=4 for water, see 

Fig. (1.3)], and a and are fitted parameters; /=2 such that the function is a linear 

combination of two Gaussians. 

The Gaussian functions are centered on the fragment atom centers and center 

of mass and are fitted using the following method. 
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Fig. (1.3) The centers of the Gaussian functions, m in Eq. (1.43). 

Ab initio calculations are performed on a number of points (192 for water 

dimer). Using these, the ab initio exchange repulsion/charge transfer is found by 

Then, the exchange repulsion/charge transfer term is fitted to Eq. (1.45) (i.e. A -» 0) 

Where 0) p  is a weighting factor (set to unity for water) and p counts a number of grid 

points. \ff is the ab initio wavefunction. 

For fragment-fragment interactions, we use exponential rather than Gaussian 

functions, and a smaller number of points for the fit. 

III. Dissertation Organization 

The present work contains seven chapters and six appendices: chapters 2 

through 6 are papers accepted, submitted to, or in preparation for submission to 

appropriate peer reviewed journals with the present author as the primary (chapters 

2,3,4, and 6) or secondary (chapter 5) contributor. 

Chapter 2 details the derivation and implementation of an expression for 

intermolecular charge penetration, an effect which is not accounted for when one 

E, remainder 'polarization 'electrostatic (1-44) 

(1.45) 
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represents a three-dimensional charge density using a distributed multipolar 

expansion. 

Chapter 3 introduces a modified derivation of Ditchfield's gauge invariant 

atomic orbital method for calculating chemical shifts. This method is coupled with a 

modified implementation of McMurchie-Davidson one- and two-electron integrals. 

The ultimate goal is to couple these methods with the Effective Fragment Potential 

(EFP) method for solvation to allow for the prediction of chemical shifts in solution. 

Chapter 4 describes an application of the EFP method to study the solvation 

of formic and acetic acids. As many as five water fragments model solvation of the 

weak acids, and physical properties such as dissociated bond length, Mullikan 

charges, and energy are monitored as a function of the number of added waters. 

Chapter 5 describes the implementation and reports results for the 

generalization of the Gaussian-2 and Gaussian-3 methods for multi-configurational 

wavefunctions. The purpose of these methods is to theoretically predict 

thermodynamic values to chemical accuracy. 

Chapter 6 is a study of the electronic structure of titanocene, the titanium 

analog of ferrocene. A variety of theoretical methods are used, including HF, 

second-order Meller-Plesset (MP2) theory, DFT, MCSCF, and coupled cluster 

theories. 
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CHAPTER 2: EVALUATION OF CHARGE PENETRATION 
BETWEEN DISTRIBUTED MULTIPOLAR EXPANSIONS 

Taken from a paper that has been published in the Journal of Chemical Physics. 
Reprinted with permission from the Journal of Chemical Physics 112(17), 

May 1, 2000, pp 7300-7306. 
Copyright 2000 American Institute of Physics 

Mark A. Freitag, Mark S. Gordon, Jan H. Jensen, and Walter J. Stevens 

Abstract 

A formula to calculate the charge penetration energy that results when two 

charge densities overlap has been derived for molecules described by an effective 

fragment potential (EFP). The method has been compared with the ab initio charge 

penetration, taken to be the difference between the electrostatic energy from a 

Morokuma analysis and Stone's Distributed Multipole Analysis. The average 

absolute difference between the EFP method and the ab initio charge penetration for 

dimers of methanol, acetonitrile, acetone, DMSO, and dichloromethane at their 

respective equilibrium geometries is 0.32 kcal mol '. 

I. Introduction 

There are several fundamental long and short-range intermolecular 

interactions that occur between closed shell molecules in their ground states: Long 

range interactions (U*r") are due to electrostatics, polarization and dispersion; 

while exchange repulsion, charge transfer, and charge penetration are considered to 

be short-range (LA«e'ar).25 In principle, one can calculate all these interactions to a 

desired level of accuracy from the system's approximate wavefunction using ab initio 

techniques. In practice, the computational demands of such calculations quickly 

become insurmountable as the size of the system increases. This is a particularly 

difficult problem when one wishes to study solvated species, and so in recent years 

there has been considerable work in developing discrete potentials, given in terms of 

the above intermolecular interactions, for common solvents, particularly water.26 



www.manaraa.com

22 

The goal in these studies is to develop a pseudo-quantum potential that can recover 

ab initio results while requiring minimal CPU time. 

One such effort has been the development of the Effective Fragment Potential 

(EFP) method.27 In this method, one typically divides the total system into two 

parts, an ab initio, or active region, and a fragment region (although there is no 

explicit need for an ab initio region). Then the fragment-fragment and/or fragment

ai initio interactions are calculated within the framework of the EFP methodology. 

Since the EFP model to date has been based on Hartree-Fock theory, EFPs allow for 

the calculation of those intermolecular interactions that one would expect to find at 

the Hartree-Fock level of theory: Electrostatics, polarization, exchange 

repulsion/charge transfer, and charge penetration. (See Chapter 4 for a detailed 

discussion of the EFP method.) 

In several recent papers a modification of the original EFP method has been 

discussed,28 the key feature of which is the method's generalization to any solvent. 

This discussion is continued in the present work with a focus on the calculation of 

fragment-fragment charge penetration. 

Conceptually, charge penetration can be understood in the following way: 

Consider two molecules separated by a large distance from one another in space. 

The electrostatic interaction between these two species is then very well represented 

by Stone's distributed multipolar analysis (DMA),29 in which the electrostatic 

potential of each molecule is expanded about several points, typically the atom 

centers and bond midpoints, into monopoles, dipoles, quadrupoles, octopoles, etc.30 

The interaction energy is then calculated using the expressions for classical 

multipolar interactions. However, if the two molecules are brought close enough, 

such that their charge densities overlap, the nuclei on one molecule will no longer be 

shielded by its own electron density, and will experience a greater attraction for the 

electron density associated with the other species. The energy difference resulting 

from this increased attraction is referred to as charge penetration. 

Mathematically, Stone demonstrated the origin of charge penetration through 

the following simple example:23 Consider the interaction of a hydrogen-like atom 

with nuclear charge Z and a proton. The wavefunction of the former is given by 
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r(r)=(f)Vz' (2.1) 

and the electron charge density is given by 

p(r) = -—e~2Zr 

it 
(2.2) 

One can then use Poisson s equation where ç, is the permittivity of 

free space, to find the potential due to that density. This results in 

V ( r )  =  —  +  e ' 2 Z r  

r 
(2.3) 

Since a multipolar expansion is in essence a Taylor expansion of the potential, which 

is a simple function of 1/r, the second term in Eq. (2.3) is identified as the charge 

penetration. At moderate distances, the charge penetration falls off as a simple 

exponential. 

It is well known that the exchange repulsion decays exponentially with 

distance. Murrell and Teixeira-Dias31 have shown that charge penetration (Eprn) and 

exchange repulsion energies (EXR) behave similarly, and have suggested the 

following relation between the two: 

where a and b are empirical parameters, and R is the intermolecular separation. 

Conceptually, charge penetration should also be related to the intermolecular 

overlap. Murrell had earlier observed that 

Exr = —Epen(a + bR) (2.4) 
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?xr k S' E X K  =  — (2.5) 

where k is an empirical parameter and S is the overlap integral between two 

molecular wavefunctions. Taken together, Eqs. (2.4) and (2.5) suggest that E**" 

roughly scales as the square of the intermolecular overlap. This suggestion is 

supported by a recently published equation32 for Evm between two non-orthogonal 

MO's / and /', 

ET = -2 
-21" il,/ t <2'6> 

where R„ is the distance between Gaussian centers. Eq. (2.6) is derived within the 

Spherical Gaussian Overlap33 approximation, and yields charge penetration energies 

that are, on average, within 0.25 kcal mol'1 M of the exact result for six different 

homomolecular dimers of common solvents.32 

An alternative, presumably less computationally demanding, way to 

calculate charge penetration between fragments is to introduce a damping function 

that multiplies the electrostatic potential. Consider Eq. (2.3), when rewritten as25 

V(r) = [l-e"2Zr(l + = f,bmp(r) V^ir) . (2.7) 

This suggests that a multipole expansion of the electrostatic potential (V"U,T) can be 

corrected for charge penetration effects by using a damping function,/damp. Indeed, 

as part of the original EFP method, Day et. al. have used a damping function to 

model the electrostatic charge penetration between a distributed multipole 

expansion and an ab initio charge density27. Damping functions have also been used 

to correct multipolar expansion models of the induction energy,35 and dispersion 

energy.36 
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The present paper describes the use of damping functions to model charge 

penetration effects between two or more multipole expansions, i.e. to correct the 

DMA electrostatic interactions between EFPs. The basic procedure is as follows: 

One must choose the parameter in the damping function such that the function fits 

the molecular ab initio electrostatic potential well in the region of interest. Then the 

difference between the damped and undamped electrostatic interactions, within the 

framework of the DMA, will be a good approximation to the charge penetration. A 

derivation of this EFP/EFP charge penetration energy, along with an explanation of 

how the damping function parameter is found, is given in Section II. The success of 

this method for several homomolecular dimers is demonstrated in Section HI. A 

summary of our findings is presented in Section IV. The entire procedure described 

here has been implemented in the electronic structure code GAMESS.37 

II. Theory 

The notation used in the following equations is defined in Fig. (2.1). The 

charge densities pA and pB are centered at points A and B, respectively. These points 

represent the atomic centers and bond midpoints for EFPs. Points 1 and 2 represent 

electronic positions associated with pA and pB, respectively. All points are referenced 

from an arbitrary origin, O. Using these definitions, the electrostatic interaction of 

two charge densities pA and pB is given by 
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2 

r - R  

O 

Fig. (2.1) Notation used in Section H. (See text for explanation.) 

EEUE =JJ<Mr2 pA(rL4)pB(r2S)|rl2 

= Jdrx pA(rlA )J</r2 ps(r2S)|r12| 

-I 

i-I (2.8) 

where r1A = r, — RA. In the EFP method the electrostatic potential due to the charge 

density is expanded in terms of charges, dipoles, quadrupoles, and octupoles at each 

atomic center and bond midpoint using Stone's distributed multipolar analysis: 

EUTC = J</rlpA(rlil)J</r2pB(r2H)[|rli,rI _i£b— 
L r\B 

= |*lpA(r1A)Vs
mti"(rl8) 

+ ••• 
(2.9) 
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where, as suggested by Eq. (2.9), VB
m"" is expanded in multipolar terms: 

V(rl8) = Vf»"(rlB) + + - . (2.10) 

Then, as indicated above, the effect of charge penetration is accounted for by 

multiplying Eq. (2.10) by a damping function. This damping function should have a 

number of features: a) go to unity for large RAB and fall off towards zero as RAB 

approaches zero (where RAB is the distance between points A and B); b) fit well to 

the ab initio electrostatic potential of an isolated fragment in a region near its van der 

Waals radius, and c) give rise to tractable integrals in Eq. (2.9). After numerous tests 

with many functions that fit one or more of these criteria, it was found that a simple 

exponential function gave the best balance of the desired qualities: 

The parameter a is determined by minimizing the difference, A, between the 

quantum mechanical electrostatic potential (ES) and the multipolar expansion of the 

potential over a grid of points: 

To account for the fact that two damped distributed multipolar expansions 

are interacting, the charge density on A, pA(rlA), is found by applying Poisson s 

equation to the damped charge potential, Eq. (2.11): 

vr"(r,A) = (l-c-"")vr(rM)- (2.11) 

4= I [K ,ES 
tibimno damped multipole 

$rut points 

PA(r,A ) = -e„,V2vr"CrlA > = pTs'^a) + pfolg(rlA ) + -, (2.12) 

Since Poisson s equation is applied to each term in the damped charge 

electrostatic potential, the charge density is also expressed in terms of charge, dipole, 
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quadrupole, etc. contributions. Then using Eqs. (2.12) and (2.10), the integral in Eq. 

(2.9) becomes 

£B"=Jdrlp4(rIA)vr'(r„) 

= jdr,[p:; 
(2.13) 

Consider the first integral in Eq. (2.13): 

- J*, fC"(r,A)V„"""(r„). (2.14) 

The approximate equality in Eq. (2.14) is due to the fact that it is not symmetric with 

respect to interchange of points A and B. In Eq. (2.14), the charge density on A 

interacts with the damped charge potential on B. If the points are interchanged, the 

charge density on B interacts with the damped charge potential on A. Since we wish 

to calculate, e.g. charge-charge, charge-dipole, dipole-charge, etc. interactions 

separately, the integrals must be symmetrized with respect to interchange of points. 

This is done by adding the interchanged integral and taking a simple average of the 

resulting energies; for example, 

= ![/*, J*, pr"(r,.)V^'(r1A)]. (2.15) 

For clarity, only the integral Eq. (2.14) will be explicitly discussed; the second 

term in Eq. (2.15) can be found trivially at the end of the derivation by exchanging 

points A and B. 

From Eqs. (2.10), (2.11), and (2.12) one finds 

pf"*'(rlA ) = q* 
a

'
A g" g"'r" (2.16) 

1A 

^(r18)=[l-e-°'r"]ç8 (2.17) 
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where the charge at point A, qA, is found using Stone's method,29 and eu is the 

permittivity of free space.25 Then Eq. (2.14) becomes 

rEJuc 
"chg-ehif 4b 

i f f e~a* 'M r , e'a4 r" e~a" (2.18) 

which can be evaluated using the following integrals: .38 

Jdtx e'2a^ rlB
l = —- e~2a^" (l + a, RAB)] 

AB^A 

Jrfr, e'2a'r'Ae'2aRr'" rlB = —^ ^t{«.^"20[bRib -e"a^-[or4 + R,B(a2 -a2)]} 
MaÂ-ai) 

aBe-2a<*<B [RAB(a2 - al) + 2a,] 

+a4<?-2û"R"[RAti(a2 -a2)-2aB]j 
idr r-toAtA 

The second two are given by Coulson; the first has been evaluated using his method: 

First, transform to spheroidal coordinates,39 where 

dt{ = ilz = ̂ - R^|/V - [l' 
8 

1 <A<oo -!</i<+l 0<</><2/r 

such that 

J d r ,  c " " ' r "  r I H '  =  1  R ; J " f c ' d M f l d i p  ( i  -

= f R«r 
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substitute x  =  X - f i :  

\drx e2a^r;l = yR'J" J^dfulx xe'a^BX 

-f 

MS 

-"A" ibU-/<)| riizif)+_L_ï 
l«AR,B 

aA&AB J 

x  -2  = — R 
AH ^-L-f dv 

V UA AB "A AB J 

substitute .r = I - fi : 

fdr, e-""»r;J ^iR^f—L-^xe-'^x + ̂ -^dxe-""'" 
*• V A AB A AS / 

f _4_+_i_)+ l_1 
aA R-AB V aA R-AB ®ARAB J aA^AB J 

+^lï-[—L-e-2"'- +_L_1 
® A AB L ®A AB AB J 

tAH1 - (1 + 2«,R,»)]+Tjp-[l - ll 
vUA*MB A AB ) 

= —r—(l-e~2a<Rin -2a.R.Be'2a^ + l-tT2a^B) 

= ̂ -[2"2e"2aARA,(1 + ̂ R^)l 

= YRab 

= |RAS 

= T3^— I1 " (1 +«ARAB)] 
«ARAB 

which was to be demonstrated (Q.E.D.). The use of these integrals yields 

pEl'C _ ?A 4g 
t-tAg-cAg n <v. MB '-"-WW 

a„ R. (2.19) 
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when ctA # as, and 

pElec _ <Ia 4b 
chti-cltx n 

AB 

(2.20) 

when a A =a B =a.  In deriving Eqs. (2.19) and (2.20), we have used the fact that 

4Jte0 = I in atomic units, and RAB represents the distance between expansion points A 

and 8. 

A similar procedure is used to calculate electron-nuclear interactions; here the 

damped monopole contribution to the density is allowed to interact with the 

unscreened nuclear charge. Again, starting from Eq. (2.9), the interaction is given by 

Note that Eq. (2.21) is already symmetric with respect to interchange of A and B. 

Finally, summing Eqs. (2.19) and (2.21), including the symmetrization, and 

subtracting out the undamped interactions, the charge penetration energy for 

charge-charge interactions only becomes 

(2.21) 

qA{qB+2ZB)e-a*R« +qB(qA + 2ZA)e' -
aaR\B 

(2.22) 

where a A  * a B  and Z A  B  = 0 for bond midpoints. For the a A =a B =a case, 
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C-, =-^j[?W»(l + îlfM-) + «AZ.+?A je"'- (2.23) 

Note in Eqs. (2.22) and (2.23) the total charge penetration is the sum of all charge 

penetration energies between unique pairs of intermolecular DMA points A and B. 

If one follows the above procedures for charge-dipole interactions, an 

equation analogous to Eq. (2.13) is found: 

jdrlp^rge(rlA)V^ok{rlll) = qAtiaa\e0 \drx -cos0B + Jrfr, 
riA r\B r\A r\B 

-cos 0B 

(2.24) 

The integrals in Eq. (2.24) can also be evaluated analytically using Coulson's 

method, however, the first two dipole-charge integrals, 

/ *, pr>„, q,n, a, £„ 
'lA'XB 

r.. 

r\0 

riAriB 

cos 9, 

riAriB 

g - " ' f " e ' g , f " C O S e t  

IaIB 

(2.25) 

do not converge analytically. The resulting increase in CPU time rules out a 

numerical analysis of these integrals, and evaluating charge-dipole interactions 

without dipole-charge means not including all terms of a given order. Since this is 

undesirable as well, the following analysis includes only charge-charge interactions. 

It will be shown that even with such a seemingly severe truncation, a major 

percentage of the total charge penetration is still recovered. 

Before the results of the above analysis are given, the procedure for 

determining the alpha parameter in the damping function will be briefly described. 

Consider the error function 
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A =  X  [ K ^ m »  -  V Z L p < d  m u l t i p o l e  ]" (2.26) 
grid poaas 

based on the difference between the ab initio and multipolar electrostatic potentials. 

A grid is defined about an isolated fragment molecule in the following manner: 

Concentric spheres are placed about each of the atom centers at 67% and 300% of the 

van der Waals radius of the corresponding atom. As will be shown in the next 

section, these values were chosen because they result in the best fit of the damping 

function to the ab initio density, and they were found to describe the physically most 

important regions in terms of charge penetration. The fragment is then placed 

within a three-dimensional Cartesian grid with a spacing of 0.50 Bohr in each 

direction, and any point not within the two spheres is discarded. It was found that 

the spacing has little effect on the fit unless the distance between grid points 

becomes too large; 0.50 Bohr balances run time and accuracy well. The ab initio 

density is calculated on the fragment during a GAMESS run, and the electrostatic 

potential is computed at each grid point. Finally, the parameter a is optimized in 

the exponential damping function such that A in Eq. (2.26) is minimized. Note that 

a is a property of the isolated monomer molecule. 

III. Results and Discussion 

Several tests were run to determine the optimal values of (rmin/rmax) for the 

radii of the concentric spheres about each atom to determine the set grid of points 

used in (19). Fig. (2.2) shows the results on the water dimer using charge-charge 

interactions only. The dimer geometry used here was obtained by first finding the 

ab initio geometry at the RHF/6-31+G(d,p) level of theory, and then superimposing 

the individual fragment monomer geometries on the dimer structure.32 The abscissa 

is the relative distance between the water molecules; 0 Â represents the equilibrium 

distance between the oxygen atoms, negative values bring the fragments closer 

together, positive values move them further apart along a line connecting the 

oxygen atoms. 
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Fig. (2.2) Charge penetration error in kcal mol1 as a function of oxygen-oxygen 

distance in the water dimer, and as a function of rmm (separate curves). rmax is 300% 

of the Van der Waals radius of each atom. 

The fragment geometries described above are used for the Morokuma 

analysis [6-31+G(d,p)j, and the resulting electrostatic energies are taken to be the 

exact interactions for ab initio electronic densities. The FRAGONLY electrostatic 

energies are obtained from a fragment-only calculation on the dimer, and do not 

include any damping in the DMA. The difference between the Morokuma analysis 

and the FRAGONLY run is then taken to be the charge penetration that the present 

method is meant to calculate. It has been shown that a simple model of undamped 

electrostatics and hard spheres leads to a good prediction of equilibrium geometries 

for Van der Waals complexes,40 so only the relevant interaction energies, with and 
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without charge penetration, are reported here. In Fig. (2.2), r^,, is set at 300% of the 

Van der Waals radius of each atom, and rmin is varied from 30% to 70% of the Van 

der Waals radius. The ordinate is the difference between our calculated charge 

penetration and the exact (Morokuma-FRAGONLY) charge penetration. 

As rmin approaches the atomic nuclei, the simplistic exponential damping 

function breaks down as evidenced by the large error for the rmin = 30% curve. To 

understand this, consider the functional form of Stone's estimate of charge 

penetration given by the second term of Eq. (2.3) versus a simple exponential. The 

single parameter exponential function crosses the ordinate at unity when r = 0, 

whereas Stone's function rises towards infinity. Therefore the exponential function 

does not contain adequate flexibility to fit the ab initio potential in this region close to 

the nuclear cusp. Depending on the specific monomer potential being fit, a 

breakdown is expected to occur somewhere in this region. Once this region has 

been entered, the alpha fitting procedure for the simple exponential quickly 

deteriorates, the foundation of the method erodes and results in unpredictable error 

in the calculated charge penetration. This can be seen in Fig. (2.3) for other dimers, 

where the average breakdown point occurs in the region of rmin = 55-60%. Referring 

back to Fig. (2.2): For the higher values of rmuv as the monomers move farther apart 

the charge penetration, and thus the error, goes to zero. At roughly rmin = 40%, 

almost all of the charge penetration is recovered at the equilibrium water dimer 

geometry, 
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Fig. (2.3) Charge penetration error in kcal mol'1 for six homomolecular dimers at 

their equilibrium geometries, as described in the text. The charge penetration error 

is given as a function of rmin. r^ = 300% of the Van der Waals radius on each atom. 

although we have seen that this value is most likely too close to the nuclear center to 

be used in general. 

Tests on solvents other than water are shown in Fig. (2.3). It should be noted 

that although these tests were done on dimers of identical monomers, the method 

does not require this restriction; the charge penetration between any types of 

fragments can be found this way. The geometries were found using the same 

method as described above for water dimer. The Morokuma analysis was also 

performed using the 6-31+G(d,p) basis. Again we note that at smaller values of rmin 

the absolute error in all of the dimers increases unpredictably. As rmin increases to a 
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range of 60-80%, the error becomes more stable, and as rmin increases further, outside 

of the physically meaningful region for charge penetration, the error increases again 

for most dimers. One could find an optimal value of rmin for each of the dimers 

shown, but overall the best choice seems to be in the range 60-80%. Fig. (2.4) shows 

the 

2.0000 -

1 5000 • 

•Std. Deviation 
•Average Error 
•Weighted Average 

1.0000 • 

0 5000 • 

0 0000 

55 75 35 45 65 

0 5000 • 

- 1 . 0 0 0 0  ~  - - —  -

rmin (% of VOW radius) 

Fig. (2.4) The average error, standard deviation, and weighted average of the six 

homomolecular dimers in Fig. (2.3), as described in the text. The charge penetration 

error is given as a function of rmin. r^,, = 300% of the Van der Waals radius on each 

atom. 

average error of the six dimers, the standard deviation, and the average error 

weighted against the standard deviation. This plot shows where the standard 

deviation is both small and centered about zero error. Although this plot suggests 

the optimal value of rmin is 60%, the weighted average difference between rmin=60% 

and 67% is only 0.05 kcal mol"1, so very little is lost by choosing the larger, more 
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conservative value of rmin = 67%. This choice is merely a suggestion based on the six 

dimers tested, and can be changed in GAMESS by the user. Table (2.1) shows the 

numerical results when rmin = 67%. The average absolute error is 0.32 kcal mol1; the 

largest absolute error is 0.65 kcal mol"1 for methanol. If rmin = 80%, the average 

absolute error for these six dimers is reduced to 0.27 kcal mol '; however, this value 

of rmin seems too high, since it nears the Van der Waals radius and the error is not 

spread as evenly about zero. Note that only the absolute value of the error is 

important. The overall charge penetration itself is attractive and thus negative, but 

there is no assurance that the charge penetration will not be overestimated using this 

method. This is especially true since only charge-charge interactions are included. 

Dimer 
Electrostatic 

Morokuma 
energies 

FRAGONLY Difference Charge-charge Error 

(CH2)2SO -10.89 -8.42 -2.47 -2.89 0.42 
CH3CN -5.12 -4.22 -0.90 -0.78 -0.12 

(CH3)200 -3.26 -2.66 -0.59 -0.78 0.19 
CH3CH -8.12 -6.89 -1.23 -0.59 -0.65 
CH2a2 -1.74 -1.47 -0.28 -0.33 0.06 
H,0 -8.21 -7.12 -1.09 -0.60 -0.49 

Table (2.1) Charge penetration results, 6-31+G(d,p), for dimers of six common 

solvents; rmin/ rmax = 67%/300% of van der Waals radius on each atom. (Grid 

spacing = 0.50 Bohr. All values are in kcal mol"'. The average absolute error is 0.32 

kcal mol'1. See text for discussion.) 

The values of alpha for rmin= 67% are given in Table (2.2). Note that since a is 

found by fitting the isolated monomer, these values will not change when used in 

heteromolecular fragment systems. 



www.manaraa.com

39 

Monomer DMA point Alpha 
C 2.91 
H 1.66 
S 1.82 

(CH3)2SO 0 1.94 
S-C bm 1.22 
S-O bm 10.00 
C-H bm 1.49 
C (methyl) 2.17 
C (cyano) 1.96 
N 1.81 

CH3CN H 1.76 
C-N bm 1.48 
C-Cbm 0.56 
C-H 1.54 
C (methyl) 1.89 
C (carboxyl) 1.75 
0 1.97 

(CH3),G0 H 1.75 
C-O bm 1.57 
C-C bm 1.03 
C-H bm 2.08 
C 9.87 
O 1.93 
H (methyl) 1.65 

CH3OH H (hydroxyl) 3.06 
C-H bm 1.63 
C-O bm 10.00 
O-H bm 10.00 
C 10.00 
a 1.78 

CH2Q2 H 1.76 
C-H bm 2.00 
C-CI bm 10.00 
O 1.88 

H2O H 2.95 
O-H bm 10.00 

Table (2.2) Values of the alpha parameter used for the monomers that make up the 

dimers in Table (2.1). (The abbreviation "bm" refers to bond mid-point.) 

IV. Summary and Conclusions 

A formula to calculate the charge penetration energy that results when two 

charge densities overlap has been derived for molecules described by an effective 
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fragment potential (EFP). The method has been compared with the ab initio charge 

penetration, taken to be the difference between the electrostatic energy from a 

Morokuma analysis and Stone's Distributed Multipole Analysis. The average 

absolute difference between the EFP method and the ab initio charge penetration for 

dimers of water, methanol, acetonitrile, acetone, DMSO, and dichloromethane at 

their equilibrium geometry is 0.32 kcal mol"1. 

The EFP method in general has been shown to reproduce ab initio results very 

accurately for water41, and this work is another step in the continuing development 

of a general EFP method that will accurately model any solvent. The derivation and 

implementation of dispersion and a parameter-free charge transfer in the EFP will 

be the subjects of future work. 
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CHAPTER 3: MODELING SOLVENT EFFECTS IN NUCLEAR 
MAGNETIC RESONANCE SPECTRA 

I. Introduction 

Nuclear Magnetic Resonance (NMR) spectroscopy has been an invaluable 

source of information on molecular structure since its inception during the winter of 

1945-46 by Bloch, et. al,42 and independently by Puree 11, et. al.43 Since 1974, there has 

also been significant development in the ab initio theory of NMR chemical shifts. In 

that year, Ditchfield presented a Gauge Invariant Atomic Orbital (GIAO)" method 

that has proven to be quite popular and accurate, especially when applied in the 

context of highly correlated ab initio methods, such as perturbation theory and 

coupled cluster theory.45 Traditionally, these calculations are carried out in the gas 

phase, and the lack of consideration for solvent effects is one of the more obvious 

sources of discrepancy between experimental reality and theoretical models. 

Several methods have been developed for treating solvent effects on NMR 

spectra; these have been reviewed recently by Helgaker, Jaszunski, and Ruud/3 and 

will only be summarized here. Due to the large size of the typical solvated system, 

the majority of the research has focused on a "supermolecule" SCF description, 

which at the HF level does not include dispersion effects. This approach has all the 

well-known advantages and disadvantages of a typical supermolecule calculation; 

an example of the latter is computational cost. There have also been two attempts to 

use continuum models of solvation, which describe the electrostatic effects of the 

solvent without treating a discrete solvent explicitly. (See Chapter 2 for more 

comments on continuum models.) The first is the GIAO / (Multi-Configurational) 

Self-Consistent Reaction Field (MCSCRF) method due to Mikkelsen, et. al.46 and the 

second is the IGLO/Polarizable Continuum Model (PCM) of Cremer, et. al.4' In the 

MCSCRF model, the molecule is placed within a spherical cavity, and the energy of 

interaction between the molecule and the continuum is written as a multipolar 

expansion. In the IGLO/PCM model, the molecular cavity is more complex; each 

atom is surrounded by a sphere, and point charges placed on the cavity surface are 

used as a tool to model the interaction of the solute with the continuum. With the 
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popularity of QM/MM methods, such as the EFP method described in some detail 

in Chapter 1, there have been attempts to use these types of methods to calculate 

chemical shifts. The main focus has been on molecular dynamic techniques using 

empirical potentials; see the Helgaker review for details and references. 

The purpose of this chapter is to show in detail how the EFP method can be 

coupled with Ditch field's GI AO formalism to predict NMR chemical shifts in 

solution. Section II will give a modified derivation of the GI AO equations, and 

Section III will derive the relevant antisymmetric perturbation theory equations for 

field dependent non-orthogonal basis sets that are needed to calculate the first 

derivative of the density matrix. Section IV will describe how the one- and two-

electron integrals derived in Section II are calculated within a hybrid McMurchie-

Davidson/ Dupuis shell structure scheme, and Section V will describe various 

strategies for incorporating solvent effects using effective fragments. 

II. Chemical Shifts and Gauge-Invariant Atomic Orbitals 

The derivation found here is based entirely on that presented by Ditchfield in 

1974.44 It has been modified slightly into a form which is more consistent and formal 

than the original. In order to facilitate a smooth presentation without neglecting the 

details, the reader will be referred repeatedly to Appendices B (vector identities) and 

C (GIAOs) for explicit derivations. The notation (B.4) will refer, for example, to 

Appendix B, part 4. 

The electronic Hamiltonian describing a closed-shell molecule in the total 

magnetic field due to a uniform external magnetic field H and the dipole fields 

arising from nuclear magnetic moments |ic, HD,--- situated at fixed nuclear positions 

RC, Rd,- has the form 

-iV, +1 A'(r,) T-2ï?4+Z 
/ C rjc j* 

(3.1) 

where ry is the distance vector between electron / and an arbitrary origin, and 
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r'c-r' (3.2) 
RCD — RC RD 

as shown in Fig. (3.1). 48 

r. - R = r. 
nuclear magnetic 

moments 

uniform external 
magnetic field 

Fig. (3.1) Definitions of vectors and notation in Eq. (3.1). 

Note that A'(r;)is the vector potential representing the total magnetic field at the 

position of electron /, and A(ry ) is the vector potential without the contribution from 

the nuclear magnetic moments, |iB : 

A-(ri, = A(,() + 2^ 
8 iB (3.3a,b) 

A(r/) = ̂ Hxr; 

Although the vector potential A'(r;) is completely defined by the above 

expressions - the first term representing the effect of the external magnetic field at 
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the electronic coordinates, and the second term representing the magnetic field that 

results from the nuclear dipole, (C.l) - some discussion of its form and properties is 

both appropriate and necessary. In 1864, Maxwell introduced his electromagnetic 

theory, which can be summarized by four equations. One of these states that the 

divergence of a uniform magnetic field vanishes; i.e. V • H = 0, where H represents 

the magnetic field vector. A vector with this property (zero divergence) is said to be 

solenoidal, and as such, can be represented as the curl of another so-called vector 

potential, in this case represented by A: 

H = V x A (3.4) 

since, for example, 

V x A  =  V x Q - H x r j  =  i v x H x r  

= l[(r - V)H - (H - V)r - r(V • H) + H(V - r)] 

= i[-(H - V)r + 3H] = 1[-H + 3H] = H 

using (B.10) and the solenoidal property of H. The difficulty is that the vector 

potential, A, is not uniquely determined by the magnetic field, H. Consider a vector 

potential modified by the gradient of a scalar function,/: 

A" = A + V/(r) (3.5) 

The curl of this modified vector potential also gives the original magnetic field: 

Vx|1h x r + V/(r)j = H + V x V/(r) = H (3.6) 
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using (B.5). Consider a specific scalar function, /(r) = —Hxr0 r, where r0 is an 

arbitrary point in space. The gradient of this function is -^Hxrç,, and Eq. (3.5) 

becomes: 

A" = lHx(r  + r„)  (3 .7)  

This modification in effect moves the coordinates of the nucleus in question by a 

distance r0. The physical implications of the vector potential's mathematical 

properties are as follows: one can modify the vector potential without changing the 

external magnetic field, and therefore without changing the physical system. 

However, the description of the physical system, the Hamiltonian, depends on the 

vector potential, not the resulting magnetic field. Changing the vector potential as, 

for example, in Eq. (3.7), will change the Hamiltonian and thus the observable 

energy, but since the physical system has not in fact changed, the observable 

eigenvalue should also remain unaffected. This means that the wavefunction must 

change by some complex phase factor to cancel out the change to the Hamiltonian, 

leaving the observable unchanged. Modern quantum chemical techniques 

formulate an approximate wavefunction expanded in an appropriate basis set, (see 

Chapter 1) and unless it is unusually large, this basis is not flexible enough to allow 

for the necessary changes in the wavefunction. 

The factor of r0 can be referred to as the gauge origin, and the resulting 

dependence on the choice of this origin is called gauge dependence. For atoms, this 

origin is easy to choose to give constant results: the nucleus. For molecular systems, 

the gauge origin cannot be chosen so easily. To compensate for this, Ditchfield, 

following London,49 used gauge invariant atomic orbitals (GIAOs) which act to 

cancel out the gauge dependence in the wavefunction: 

Z/(H) = e"2>xR'>. (3.8) 
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We will return to the use of these GIAOs later, but for now simply note that the 

phase factor is a function of the external magnetic field and contains the ultimate 

integration variable r just as the unperturbed basis function, <j>jf does. [See Eqs. 

(1.34) and (3.66).] First, let us return to the form of the Hamiltonian. 

Eq. (3.1) can be expanded (C.2) to give 

Where the subscript greek indicies are tensor notation, and refer to any one of the x, 

y, or z Cartesian directions. One can then use the following definitions to simplify 

the above expression: 

*• I B 'jB I 1*1 'jt D BxD ^BD 

*-c  a i c  a.B i jB (3.9) 

V LT V (r> riariW) 
Z =3 . 
•a.fi I r/B 

(3.10) 

a#'(H,|i)| _ i 
il(r,xV,X=-£5X=,'* (3.11) a 

(3.12) 

(3.13) 
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d'rf (H,|i) 1 (3.14) 
o LC i r'B 3Ha9/i 

These definitions allow the Hamiltonian in Eq. (3.9) to be written as 

"(H,|l) = 'Hw + H/:1'01 + /X^Ba^Sa0'" 
a a.B 

(3.15) 

2 a.0 B.a.fi 

The most critical point here is that the first order terms are pure imaginary, which is 

a result of expanding the NMR Hamiltonian in an exact Taylor-like series.50 (The 

perturbation is therefore said to be "antisymmetric" to first order.) The energy 

associated with this Hamiltonian is given by Schrodinger's equation: 

#*(H,nBmH,|iB) = E(H,^)Y(H,^) (3.16) 

For small values of H and |iB, we can similarly expand the wavefunction and energy 

in a Taylor series about their zero-field values. Again, it is critical to note that since 

the Hamiltonian has pure imaginary terms at first order when expanded, so will the 

wavefunction and the energy, which allows us to exploit a similar notation: (a 

superscript "+" denotes adjoint) 

Y(H,|i„) = 4"°'+H dV 
dH 

9Y 

= M,(o) +i]?M BaV(
B

0
a
l> +-

(3.17) 
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E(H,m) = E(0,+H 
d£ 
dH 

BE 1 » d2E 
2 aïF 

2Hb d|iBdH i«-a |ig +"• 

= £'" +<X#'.-££" 
a a ^ a/} 

(3.18) 

+ S  ̂ct^Bap^BP + +'" 
«9 

The following is a qualitative, experimental expression for the energy of a molecular 

system in the presence of a uniform external magnetic field: 

£<H,n, > = £""-1 W.y. - X A,„«„ - +1 "„<w«+•• • <319> 
a a — ap aP 

Where yais the permanent magnetic dipole of the molecule, Xap 's the molecular 

diamagnetic susceptibility tensor, and GBap is the magnetic shielding tensor on 

nucleus B. Comparison with the expanded expression for the energy, Eq. (3.18), 

allows for the identification of the shielding tensor with a second derivative of the 

energy: 

<T, 
_ pd.D 

Bap — C-BaP (3.20) 

Therefore, the task of calculating the shielding constants has been reduced to 

the evaluation of the second derivative of the energy with respect to the external 

magnetic field and the nuclear magnetic moments at zero total field strength. Note 

that Eq. (3.20) is ultimately a definition, and the above comparison has been given as 

a physical justification. 

At this point, we return to the use of GIAOs, and construct molecular orbitals 

from them: 
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V/(H,|Ib) = Xcw(H,gB)^(H) (3.21) 

Xvça ) = e~:K"\=fv(t>v (3.22) 

Av=1HXRv (3.23) 

Note that the molecular orbitals (MOs) are complex and field-dependent. One can 

then use these orbitals in standard closed-shell Hartree-Fock theory and arrive at an 

analogous Roothaan equation: 

I(Fv, -EAih =° (3-24) 

where 

S„, ={xAx.) (3.25) 

F,A = HV,+CVÀ (3.26) 

and further, 

Hv, =(^|||(-/'V + lA'(r))"-X|LJ|^) (3.27) 

G" = Ep««Gvi» (3.28) 

Note that in the matrix elements of the core Hamiltonian, Eq. (3.27), we integrate 

over r, the coordinates of electron 1. See, for example, the reasoning leading to Eq. 

(1.23). Following through with HF theory, the energy of the system is given by 

£ = (329) 
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which is the result of introducing a basis set into Eq. (1.31). 

With the introduction of Eq. (3.29), and recalling the definition of the 

shielding tensor, our task is well-defined: we must take the second derivative of Eq. 

(3.29) with respect to the external magnetic field and the nuclear magnetic moments, 

a dependence which appears in the GIAOs and Hamiltonian. In practice, we will 

evaluate this derivative to first-order, and in order to do this, we expand the various 

fundamental quantities in expansions similar to the Hamiltonian, Eq. (3.15), energy, 

Eq. (3.18), and wavefunction, Eq. (3.17). Just as with these prior expansions, the first 

order terms will be pure imaginary: 

) = C™' + iH„ (cr1X + (G^1 • 

=  H ™  + ; H „ ( f C ' ) e  +W S a (HZ% + -

(3.30a,b,c,d) 

where we note that (C.3) 

(XT , 

(3.31a,b) 

and (C.4); 

(3.32) 

results which will be handy later in the derivation. 
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To begin, substitute the expansions, Eqs. (3.30b,c,d) into the energy 

expression, Eq. (3.29), and differentiate with respect to the nuclear magnetic 

moments: (C.5) 

d£ 

BP 
(3.33) 

This can be simplified if we note that (C.6) 

dH BP 
= (3.34) 

This, along with the explicit derivative of the density matrix, Eq. (3.31b), and the 

Roothaan equation, Eq. (3.24), gives: (C.7) 

BE 
= 'IC'(HÏÏ'). 

u 
(3.35) 

Recall the definition 

£*i" 
=ic«r)e 

vJL 

(3.36) 

which allows us to easily take the second derivative and find the expression for the 

shielding tensor: 
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3E(0-l) 
^ _ rU.l) _ 0,ZBP 

Bafi ~ Baf) ~ ^ -[le(HK'), 
= _d 

dH, 

= 1 
VA 

3C(h'»"1 + P<»« 
3H dH 

p (3.37) 

3P<o> 
Note that ° )a since Pj"1 # Ptvl, and in the last line, Pj"' is now totally field 

independent, whereas it still depended on H before the derivative was taken. The 

specific derivatives in the shielding expression are then given by (C.8) 

0.38) 
c  rB 

where LB
p =(rB x V) p ,  and (C.9) 

«l'L |f |^}+(Q").^ 
£•? 

0* 

+  2 ? <  

(3.39) 

where TVjl = RvX x rv and Qvl = Rv. x RÀ. (Note that these matrices are antisymmetric; 

i.e. Tjx = -TvV which is to be expected for an antisymmetric perturbation.) The 

remaining piece of the shielding tensor is the first derivative of the density matrix 

with respect to the external magnetic field. This is the subject of the next section. 

III. Self-Consistent Antisymmetric Perturbation Theory for Perturbation 

Dependent Non-Orthogonal Basis Sets 
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The first derivative of the density matrix is given by Eq. (3.31a), and depends 

on the perturbed coefficients, (4,1,0>)a- Rather than calculate these quantities, as 

Ditchfield does, we instead wish to derive a direct expression for the full matrix 

(PV'0))a- In order to do this, we must consider antisymmetric perturbation theory 

for non-orthogonal, field dependent basis sets, of which GIAOs are an example. The 

term 'antisymmetric' is used because to first order, perturbations due to the external 

magnetic field and nuclear moments are pure imaginary, as seen in the previous 

section. The following will be a summary of two papers; the first is a general work 

by Dodds, McWeeny and Sadlej31 which treats the general symmetric problem, and 

the second by Wolinski, Hinton and Pulay,52 which deals specifically with GIAO 

chemical shift calculations. As in the previous section, the reader will be referred to 

Appendix C and D for detailed derivations. 

Consider a closed-shell system with n singly-occupied orbitals 

constructed from m basis functions where this set is not 

orthonormal. It is always possible to make the set orthonormal, however, by 

multiplying by an appropriate unitary matrix: 

Z = XU (3.40) 

where the bar denotes an orthonormal basis. Since (x|x) = L vve have 

I = (xlx> = = U'X'XU = U'SU (3.41) 

where we are free to choose U = S 2, which is known as Lôwdin orthonormalization. 

This has the feature that 

i _! 
LP = S - = S 2 = U (3.42) 

since the overlap matrix is always Hermitian. 
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The SCF Fock equation in matrix form is given by 

FT = STe (3.43) 

where T is an m x n matrix of basis function coefficients, and T = U T, thus 

FT = STe => FUT = SUTe => UFUT = USUTe => FT = Te (3.44) 

where we have identified T = U~'T and F = LTFU. The density matrix can thus be 

defined as 

R =TT (3.45) 

Note that we have previously defined the density matrix as P = 2TT , (see C.3) but 

these two definitions are simply related by R = ^ P. Note that since R = TT , where 

T is an m x n matrix, R is therefore m x m, where only n of the orbitals are singly 

occupied. It can be written in terms of column vectors of T, c,, in the following 

way: (Note that c, is a vector of length m.) 

R = TT=£c,C; (3.46) 
i 

To find the perturbed SCF equations, we assume a solution to the 

unperturbed problem has been found, and allow for a perturbation to the system: 

S = S(0>+S(1) +•--

F = F<°'+F")+ — 

H = H<0) +H(l) +-

(3.47a,b,c) 
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where the superscript (0) indicates an unperturbed quantity. (Note again that for 

the specific case of a magnetic field perturbation, the perturbation is pure imaginary, 

or antisymmetric. This characteristic will arise naturally in the following derivation.) The 

first order terms can be expressed using the same general expansion as in the 

previous section: 

(%'L =(^[CU +(«P.).K|*)-S[((T«UK)+(O.).(^K>] 

Note that since and Qw are antisymmetric, [see Eq. (3.39)] is also 

antisymmetric. 

Similarly, the first order term of Eq. (3.47b) can be evaluated (C.10): 

S„={jr,(H)|z<(H))=((/,0,|#1> 

S„=S«>+H.(S%1+-

where /( was defined in Eq. (3.22). Then, using (C.9.3), 

to,=i (hti+i{cr LGi+e(cs)„} 

-< %*). 

(3.49) 

which includes the first order term of Eq. (3.47c), given by (C.ll) 
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where we have used the notation [c.f. Eq. (1.17)] 

Hcm =-lv2 -
2 Y rB 

(3.51) 

The final remaining piece is the first-order derivative of the two-electron 

integrals, in Eq. (3.49), which can be constructed from the individual two-

electron derivatives: (C.12) 

/ , \U.o> 1 
(XpXMrXs) =Yc 

[(qm)„+(q„l](0,*,n,) 

+((TKI L )+(*aKt- L w. ) 
(3.52) 

(Ditchfield omits the factor of 1/2 - this is most likely due to a typographical error.) 

Note that the expression for the first order Fock matrix contains the first order 

density matrix, which is the quantity we wish to calculate. Therefore we see that 

this will be an iterative procedure. We have yet to write down the form of the 

perturbed SCF equations, so let us do this now, and then write them in an 

antisymmetric form, as presented by Pulay. Begin with Eq. (3.47) and substitute in 

Eqs. (3.47), then separate orders: (D.l) 

0th order. F^R""S"" = s(0)R(0>F(0) 

1st order. F<0)R<0,S(I1 + F<0IR|1)S(0) + F(L)R(0,S(0) = S<0)R(0)F(,) +S<0)RLL)F(0) +S<1)R(0)F(0) 

2nd order. F(0)R(1,S(1) + F(T)R<0)S(" +F(1)RO,S(0) =S(0,R(L,F(L) +S(L)R<0,FO> +S(1)R(1|F<0) 

3rd order. F(,,R(,,S(,) =SLL)R(,)F<1> 

Similarly, begin with Eq. (3.49) and substitute in Eqs. (3.47), and separate orders: 

(D.2) 
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0th order. R(0>s(0)R(0) = R(0) 

1st order. R(0)S(0)R(l) + R(0,S(l)R(0) +R(1)S(0)R(0) = R(1) 

2nd order. R(0)S(l)R(1) +R(1,S(0)Rn) +RmS(l,R(0) +R<l)S(l)R(0) =R(2) 

The other orders have been presented for completeness, but we are only interested 

in first order expressions; 

F(0)R<0)S(,) + F'^R'^S'0' + F*1'R<0'S'0' = s^'R^'F'1' •+• §'°'R<1'F10' +S'l'R'0>F<0' 
(3.53a,b) 

R(0)§(0)R(1) +R(0)S(t)R(0) +R(1)§(0)R(0) =R(1) 

In order to solve these equations, we define projection operators that are constructed 

from the unperturbed density matrix: 

OCC 
R, = R«" = £c,c; 

/ 

unixc 

r:=I-R"" = X£.'; 
i 

As an example, consider an orthonormal space of two occupied orbitals and two 

unoccupied: 

occupied orbitals 

(3.54a,b) 
unoccupied orbitals 

r\ 0 0 (T '1 0 0 0' rl 0 0 0' r0 0 0 0 

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 
R, = R<0) = ;  R 2  =1-  R ( 0 )  = R, = R<0) = 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

,0 0 0 0, ,0 0 0 1, ,0 0 0 0, ,0 0 0 1 

The first order equations in the orthogonal basis are (D.3) 

p(o>R(0)g(i) -i- F(0,R(1> + F(1)R(0> = R(0)F(I) + R(1*F'0' -f-S(1)R(0)F(0) 

R<0)Rm + R(0,S(1)R(0) +R(1)R(0) = R(l) 
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since S<0) is simply the unit matrix. Then define the projection of an arbitrary 

matrix, where /,/ = 1,2: 

Such that M = Mu + M12 + M2, + Schematically, this translates exactly to 

Apply this to the second first-order equation, Eq. (3.55b), to obtain the four 

projections: (D.4) 

(1.1) projection: R1,1,1 = -S',1,1 

(1.2) projection: R^1 = R,2 (3.57) 

(2,2) projection: 0 = R^ 

note that (1,2) projection is undetermined, and further that 

In order to fix R(
12, we use the first first-order equation above, Eq. (3.55a), and take 

the (1,2) projection: (D.5) 

= RMR (3.56) 

(R(2V)* = (R2R'"R,)^ = R;R(,,*R: = R1R(1,R2 = k™ 

(R<
12

,)> =(R,R<1,R2)* =R:R(1HR; =R2R(1)R, =R<
2'1) 

(3.58) 

F(0,x - xF(0) = - F<0)S(
12 (3.59) 
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where we have replaced x for R'/V. This equation can be solved by expanding x in 

the space of orthonormal coefficients, T, and solving for the unknown coefficients 

A,j. Its solution is (D.6) 

X = i lA„c,c ;  = ,3.60, 

where e, is the energy of orbital I. Then pull out the projection operators: 

ixrc unocc 

X = 

' / I 

and recall that these projection operators can also be expressed in terms of the 

column vectors, Eq. (3.54a,b), such that (D.7) 

0.62, 
K L ( eK ~ e i)  

Then the first-order density matrix is given by the sum of the four projected terms, 

where here we note that a perturbation due to a magnetic field should be pure 

imaginary; i.e. antisymmetric; one can demonstrate this is true by explicitly pulling 

out the imaginary parts of Eqs. (3.48) and (3.49) - we have (D.8) 

R(U = RV,1 + R(,2 + RY + R£ = -SV,' + x + x" -iS\\0) + ZX + (zx)+ 

_ _ (ICC urnxr ct(F<I,0) — ^KS(l-0>)cL (3.63) 
= _t-R

,0,s('.0)R
(0) 

+|.£ ̂  4 « ^ (c,cl -c,c;) 

At this point, let us take a moment and consider what we have derived. In starting 

with the expansions in Eqs. (3.47), we have written the perturbations in a general 

way. Since the we have seen that the first-order perturbation due to a magnetic field 
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is pure imaginary, i.e. antisymmetric, it has been shown that the resulting first-order 

density matrix, Eq. (3.63) is also pure imaginary. We therefore follow Ditchfield's 

notation by using an expression exactly analogous to Eq. (3.11): 

And so to obtain the full perturbation due to the magnetic field, we multiply Eq. 

(3.63) on the RHS by -z: 

Note that this result is not exactly that given by Wolinski, Hinton, and Pulay, but 

this is because of an error in the original publication, discovered in the course of this 

derivation, and confirmed by Wolinski.53 (The factor of two in the second term has 

been confirmed; the sign change in the first term has not, but is consistent with the 

antisymmetric nature of the perturbation.) Eq. (3.65) is for the case of an orthogonal 

basis set, but an exactly analogous expression is found for the nonorthogonal set 

using the transformation Eq. (3.52b). Therefore, in the notation used earlier [see, for 

example, Eqs. (3.48-6)], Eq. (3.65) has the form 

— = R(L) = z-R0'0' => RAO) = -z"R(1) 

<xr unocc C LI F 
Rd .O) _ _R(0)S(1.0)R(0) + £ £ —L 

K L 

then convert to the usual density matrix using R = — P 

occ unocc cZ 

occ unocc 



www.manaraa.com

61 

IV. McMurchie-Davidson Integrals 

In order to evaluate the wide variety of one- and two-electron integrals given 

by Eqs. (3.38, 3.39, 3.48, 3.50, and 3.52) we require a very flexible integration scheme. 

The current section will outline the theory of McMurchie-Davidson^1 integral 

evaluation, and describe a modified coding algorithm that incorporates the shell 

structure of integral evaluation due to Dupuis. As in the previous sections, the 

reader will be referred to Appendix E for detailed derivations. 

A One-Electron Integrals 

A standard unnormalized Cartesian Gaussian basis function centered on 

point A33 in space is given by the general formula 

(3.66) 

where rA = VXA + VA + ZA and rA = r - A. Note that the angular momentum is given 

by the prefactor of the Gaussian; i.e. if n +1 + m = 0, it is an s-function; if n + l + m = 1, 

it is a p-function, etc. A common quantity then is the charge distribution of two 

functions centered at different points: 

, x (3.67) 
,, (0iri *~atri ) = xA x

ByAyB-A :s f 

Where we then note that the product of two Gaussians is another Gaussian, as 

shown by Boys: 

B |A-B|2 
J  a A  *a B  - (a A *a B ) rS  

e ~e e (3.68) 
= EABe~apr" 
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where 

p _ aA^ + aeP (3.69) 
«A +«B 

At this point, we introduce an operator, which when acting on a Gaussian 

function, is the main feature of the McMurchie-Davidson method: 

K'e'ap4 B(dl~) 6 a'X* (3.69) 

The power and utility of the above definition is exposed when we relate it to the 

Hermite polynomials, given by the following generating function: 

=  e x  ̂ e  *  ( 3 - 7 1 )  

it follows that (E.l) 

A,e'a^ =a'/2H i(a22xP)e-a>x'' (3.72) 

Using the recurrance relations for Hermite polynomials, we can further derive the 

relation (E.2) 

ataA,v=NAn-,+PA,An+^J. (3.73) 

where it is understood that the operators act on Gaussian functions, and 

PAX = PX- Ar, where Pz is the x-coordinate of point P. 
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Since these operators are a function of a complete set of orthogonal functions, 

we can expand the Cartesian products in Eq. (3.67) in terms of them: [note that an n"1 

degree function of x requires an expansion space of Hermite polynomials also no 

greater than degree n, since H„ = Hn(xn,xn 2,xn~4, etc.)] 

v=o 
(3.74) 

Where it is understood that d™ = 0 unless 0 < N <  (n  +  n ) ,  and d™ = 1 since A0 = 1. 

Using the above recurrence relation, Eq. (3.73), we can find a similar relation for the 

coefficients of the expansion in Eq. (3.74). Consider 

rt+rt M 
= l C'a» = s (3.75) 

N= 0 V=0 

which allows us to identify (E.3): 

z/nn 
C1-" = <,(N + 1) + <PAI (3.76) 

therefore one can use the above expression to quickly calculate a table of d™ for use 

in later summations. Eq. (3.76) is specific to the x-coordinate; there are exactly 

analogous expressions for y and z, introduced here: 

l+l . _ m+îrt _ 
yX=E4'AL ; « = Am (3.77 ; 3.78) 

L=0 M=0 

Thus the original charge distribution, Eq. (3.67) can be written as 
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,m.S -
^AB —$A$B ~ XAXB}lAVBZA-B ̂  

Z n>iï n-f m \f l+j X/ m+m 
i<AN I I I/:ba.M) 
N=0 AUO AM=0 

n-fn /-rf wfw _  __  
= £,. S11 à'MfZ* A« AtA„e-' 

rA+aK'i) (3.79) 

We will return to the integral of the charge distribution in a moment. Consider first 

the more complex integrand 

0AV0S (3.80) 

and its % component: (E.4) 

0A ^"0B = 0A ^^B^B^ ^ 
(3.81) 

al't 

Then, using Eq. (3.75), we see the utility of the recursion relation for the coefficients: 

P) F (  \  ( nt-n +1 ^ 

*A te*'=K It, •'""'AVJ-HI I <r*'A„ 

n*n>l l+j rtt+m 
= £ a b  Ê  È È  

y Ai/ BAB e 

:V =0 L=0M-Q 

mm 
M (nd™-> -2arff'YJl 

X An (xP)A.L(yP)AM (zp )e~apf* 

(3.82) 

since d"'"-1 = d"'"ii~h\ =0. This illustrates the basic method for modifying integrands. 

The next step is to integrate over all space. Consider the integral of the 

charge distribution: 
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n+n  l+ l  m+m _  __  
-ÛpTp 

= Jdr£,s XII W^ALV"  
;V=0 L=0 M = 0 

n+n />/ m+f« _ ^ 
= E,„ HI Jrfr A.v A1AMf-°"'e-""«e-'=' (3.83) 

N=0L=0M=0 
rt+n /+/ m*m _ , 

= E^b IS I Jrfx A„e-'« J dy Ate-'» 
iV =0 L=0 M=0 

where we note that, for example, 

|dx A.ve-°^ = Je-B"*; (3.84) 

can easily be evaluated since the Hermite polynomials are orthogonal under a 

Gaussian weighting function: 

{dx e~ x~ Hv(X)Hm(x) = 2NN! VF 5N,M (3.85) 

Therefore, using Eq. (3.72), 

|  dx \Ne~a" x ?  = J dxapaH s  {a y
p

2xp  )e~a p X p  

\ap
/ 2H s(a'/2xp)e"' ' x p  

- i f f î )  
= aP

p-aP
r-1 d(afxp ) HN {af~xP ) H„ (a^Xp )e-c,pX? 

= cc'p
/ 2ap l 22N  Ni Vtt  5n .0  = SN  Oap

l l 2yfjc = 5V  0 |^-j  

(3.86) 

where we have noted that H0(x) = 1. This result simplifies Eq. (3.83): 
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rt+n l+î m+m ( ( _ X1/2 Z _ 
JdrQA„ = EAB5;££<e['/7 5, Jtf J -£• 

N = 0L=0M = 0 ^ \aP J KaP 

\V2 f \ l/2> 

^.Vt.O 
/ 

JC 
^.Vt.O 

/ <ap > y 

E jnn 11 pnm 
AB"0 eOJQ 

' 7C ^ 

\ aP J 

3/2 
(3.8/, 

and the overlap integral is thus evaluated. Note that the same procedure can be 

used for the derivative integrand, Eq. (3.80): 

t l+l m+m 
- E,„Y% %(*<>"/-'-2aBa:/-y[fZmjdrANAL\Me-""i 

= E 

N = 0 L=0 M=0 

Z ^ + l f+/ m + îïï 
.4ti 

= E 

Kap y 

K 
AB 

v«p y 

S EI ("<"•' - 2«»<r O-ss) 
N=0 L=0M=0 

-iaA*-yafr 

One can also make use of the general recurrence relation, Eq. (3.73) to 

evaluate the more complex dipole moment expectation value: (E.5) 

( V2 1 

jdr«>A.rc1»g=£AS f-
\ a p  )  N =0  

(3.89) 

Two applications of the recurrence relation leads to an evaluation of the second 

moments: (E.6) 

| * ] t 
v ap y .v =o 

25.,.2+2PC,5„,i + PC-"+^j 'N.O (3.90) 

Note that a similar procedure can be used for xcyc,yczc,yc, etc. 

Consider now a one-electron integral of the form 
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n+n l+l m+m _ _ 
|rfr^rc>s = £„„£££ i"-"e»Liïr jdtr;'A„<*,) A^y,) A„(zp 

M=0 L=0 M=0 
nt-n Z+Z m+m / ^ 

N=û L=0 M=0 \ x j 

x f ^ \L / 

vdP,, vdP=, 

M 
\dtr~xe'a'r? 

(3.91) 

Boys has shown,36 and we can easily verify that (E.7) 

J*reV^ =(!)/>*- F0(«pCP-) (3.92) 

we then define 

Mè)"(è)W'-\{apCP~) (3.93) 

F„(x) is related to the incomplete Gamma function, for which standard methods of 

evaluation are available.57 Using these definitions, Eq. (3.91) becomes 

n+n l+l m+m _ f *)ir\ 
[dr = Em  £ £ £ «.vu, 

.V=() Z.=0 M=0 \ a P /  

(3.94) 

Note that the values of RNLjV, can also be obtained with the help of a recursion 

relation, since they are related to the Hermite polynomials: (E.8) 

^0,0M + \.i ~ C^0.0,M./+I + ^^O.O.M-I./>I 

^O.L+l.M,; =bRN L M j+t + LRs-ULM.i+l 

R-N+l XM.j =a^-N.L.M.i+I +^Rn-I ,LM .M 

(3.95) 

(3.96) 

(3.97) 

Electric and magnetic field integrals typically involve factors of x c fr^,  and 

these can be evaluated using the above method if we note that 
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djç__( dxc 

dC, " dC, "ïêïW'Ktï"?. _*C (3.98) 

then the general integral is given by 

j dr <PA ^<t>B = jdr 0A Z £ X <47v7 
XT OCT Otr :V=()t=0.if=U 

/I+/I /+/ m>m 

\ a p  j  
\VLV/ (3.99) 

But since RNLVI is a function of (apCP~), which itself depends on Ct - P(, we have 

f(apCP2)  =f(T) 

a/ _ dT df _ dT a/ _ 0/ (3.100) 

since 

dC dC, dT dR dT dP 

(3.101) 

for any function of T. So then Eq. (3.99) becomes 

|rfr,, 

m-n t»f rttt-m ( n —\ 
=  - £ . « I l l ^  

N=0L=0M=0 \aP J 

3 1 
Ul 

ldpJ 

M 
F0(T) 

(3.102) 

where F„(T) was defined in Eq. (3.92). 

We have now developed the theory to the point where the needed integrals, 

given by Eqs. (3.38, 3.39, 3.48, 3.50, 3.52) can be evaluated. Consider the x-

component of the matrix element of the one-electron spin-orbit operator: 
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<*. =  ̂* V>' *b 
rc rc 

=j d r  ~  f  d r  ̂ ("^j 0 8  

(3.103) 

We can explicitly treat just one of these integrals to define the general procedure: 

/* 4^)**=!dt *" =W* =/dr 

8 

dC„ 

n »rt f*/ m+m »1 

E,„II I ZJ/*~* /to ^ ̂  ^ 
OVu V-0L=0 .VI =0 

d™4{mfZm- '- lecjr") 

XAv(Xp)AL(y,, )Av,(zP)Jdr r^e""* 

(3.104) 

using Eq. (3.82). For convenience, let us define F"f' = 

J , / r  « > , [ I  i ( 3 . 1 0 5 )  
V rC J N=0L=0 M =0 \ a P J 

where we have used Eqs. (3.92), (3.93), and (3.101). 

The next class of integral is given by 

<~-A = Ĵ r (3.106) 

which is simply the previous integral with a higher angular momentum on basis 

function A. In this case, m should be replaced by rti+l to account for the extra z on 

function A: 

jrfr zA[»iL = 
V 'C  J W=0L=0 M=0 \ a P J 

(3.107) 
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The final class of integral is given by 

r. r, 
(3.108) 

If we take the xx-component of this, we have 

{ * « =  < 0 A | M < L | o , )  +  ( » ,  | ^ K >  ( 3 . 1 0 9 )  
rc rc "c 

which is analogous to Eq. (3.102) with a higher angluar momentum on function B. 

We therefore modify Eq. (3.102) accordingly: 

fi>n />/ * I m+w 

I Z«"J! 
'mm 
M N=0 L=0 M=0 

f—1R 
1>UP/ 

(3.110) 

B. Two-Electron Integrals 

In order to calculate the needed two-electron integrals, one follows a nearly 

identical formalism as given for the one-electron case. Because of the strong 

similarity, we need only summarize the important equations. The basis functions 

are given by 

<Pc = <ycZcV°^ tb = xWozZ'e-"* 

Typically, these functions are constructed as a linear combination of so-called 

primitive Gaussian functions. This is also true for the one-electron case, although it 

was not explicitly included in the derivations. We include it here, however, for 

completeness and to make a point on the algorithm later on: 
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0a = 0S = 
• i 

= d^xcy'czc e °*r; <t>D = sdkDxlyl
Dz^e'a^ 

(3.112) 

where the d,A are the contraction coefficients. Note also that the exponents can vary 

from primitive to primitive. We thus have the following charge distributions; the 

first for electron one, and the second for electron two: 

i i rt + tï / + / m+rri 

«A» = I i-VÀ SIX A„ A t  
I  I  

G H 
S =0 L-0 M=0 

n'*n'/'«•/• m'crïï' 

X h iV"=0 £.'=0 M'=0 

(3.113) 

such that the general two-electron, four-center integral can be written as 

(0A0ti|0C0D ) — |^r ^A8ri2 ^CD 
I I G H n+tt /+/ m + m ti'+n'I'+t' m'+m' 

I  H E  < « ? ( 3 . 1 1 4 )  
' f .< A iV = 0 L=Û M-0 N'=0 L'=0 M'=0 

f J_)T—Îf—1 UpJ lapjldpj <3p.y 

vViz ^ ^ V 
o 

1*2, â§~) $cirr "̂""i'"M 

However, Boys has shown that3* 

! he3/2 

dr r£e-a*e-a^ = ^ ^F0(T) 
aPaQ(aP+aQ) 

(3.115) 

where T = ap0CQ PQ~. And since T is a function of P — Q, 
aP+aQ 
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-yj*<n=(ijgm <3ii6) 

in a manner similar to Eq. (3.101). Therefore 

where we have used the abbreviations 

n*it /*/ «un 
d?=<,<f„£mfeî/r i =111 

t .V=0 L=0 M=t) 

X-vu&F*#- i -ÏÏY <3-n8) 
t- ,V'=0L'=l) M"=l) 

2/r5/: 
A = • 

/ \ V-a,,ofQ(aP + aQ) 

The desired integrals are then an easy modification of this result; 

k k' 

k k' 

(3.119) 

In implementing Eq. (3.119), a modified version of the algorithm given by 

McMurchie and Davidson has been used, in that the shell structure advocated by 

Dupuis is introduced at the highest level. This allows for efficient evaluation of the 

contraction coefficients and other quantities related to a given shell. Fig. 3.2 

illustrates the basic approach schematically. 
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A shell, B shell, C shell, 0 shell 

I primitives, J primitives 

compute d"N
n, 

G primitives, H primitives 

compute F;(T), R S L M ,  A, 

loop over g, h 

count NN 

compute d^, dhD 

loop over i, j 

count MM 

- loop over k' 
loop over k 

I(k,MM,NN) = I(k,MM,NN) + (-l)'VVL%A,rD^RN>N,L>L,MtM. 

loop over g, h 
loop over i, j 

compute d^, d j B  

P loop over k 

X(MM,NN) = X(MM,NN) + Df I(k,MM,NN) 

Fig. (3.2) Loop structure for two-electron integrals. 
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V. Strategies for Incorporating Solvent Effects 

There are several potential approaches for incorporating the EFP method (see 

Ch. 4) and the G LAO chemical shift formalism. A few of these methods will be 

discussed in this section. 

The simplest approximation is to take the previously derived expression for 

chemical shifts, Eq. (3.37), and substitute the density matrix modified by the 

presence of the EFPs for its ab initio counterpart: 

where the first order density matrix, Eq. (3.65) has been similarly modified: 

p<l.ll).EFP = _ipEfPg,IJJ|p£rr + 2y"y —CLC'K)  (3.121) 
2 r  r  (eK-eL)  *•" "  

In this way, solvent effects are certainly introduced; it remains to be seen to what 

degree this approximation is reasonable. 

In addition to the above, a second level of approximation is to modify the 

vector potential as it appears in the HF core Hamiltonian, Eq. (3.27), after application 

of the commutator Eq. (C.9.1), such that it includes contributions from the 

fragments: 

(3.120) 

- A'<0 = I H x r, + £Ïî2ÎLl + ae„ 
^  B 'B  

(3.122) 

From this point, one might envision several approximations to A^,; a relatively 

simple form is to consider the effect of the nuclear magnetic moments of the "nuclei" 

of the fragments: 
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EFT nuclei 

A e „=  £  6^  (3.123)  

where I counts the EFP nuclear points. This formulation would lead to the following 

simple modification of the vector potential [c.f. (C.9)]: 

ab initio & 
EFP nuclei , 

^Hxr , + 2^- , I H xr ,+  % ^  0-124)  
rJ 7 ** rJ 

B rB I rl 

where / counts over all the ab initio nuclei, as before, in addition to the EFP nuclei. 

Since this term in the end depends only on the location of the nuclei (the integrals 

are taken at zero field strength) this would incorporate the nuclear magnetic 

moment contribution of the fragments to the chemical shifts in an 'exact' (although 

incomplete) way. The next level of approximation would be to find an analogous 

form for the first term of Eq. (3.122) - the interaction of the external magnetic field 

with the fragments. For the ab initio case, the magnetic field is crossed with vectors 

associated with the centers of the Gaussian basis functions, A. For the EFP case, it is 

tempting to choose either the points of expansion for the DMA [see Fig. (4.1)], or the 

centroids of the localized orbitals [see Fig. (4.2)] instead of the Gaussian centers of 

the basis set and proceed as in the ab initio case, but this will lead to difficulties. For 

the ab initio case, the factor rA ultimately leads to an integral where the angular 

momentum on basis function k has been increased, i.e. s—>p, p —*d, etc. Since the 

EFP points are not associated with the ab initio basis set, choosing these points will 

lead to integrals with no physical meaning. Clearly, this would not be a productive 

path for future work. 

Instead, one might consider calculating the effect of the external magnetic 

field on the fragment when the fragment is constructed; i.e. during a "MAKEFP" 

run. Such a calculation is an ab initio one, and therefore the standard GIAO method 

may be used. The difference would be to omit the second term of the vector 

potential. Thus the Hamiltonian would have the form 
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H»,«A-(r1) = iHxr, (3.125) 

There are two problems with this approach; first, the removal of the second term 

removes the dependence on the nuclear magnetic moments, and thus makes a 

straight-forward evaluation of the second derivative tensor difficult. Second, this 

formulation does not allow for ab initio - fragment interaction in terms of magnetic 

properties. Therefore, one must be aware of the need to represent cross-terms 

between the ab initio and fragment parts of the system. 

The final method for integrating the EFP method with the G LAO formalism is 

simple to describe, but quite possibly difficult to execute. The electrostatic and 

polarization terms of the EFP potential are ultimately constructed from a finite basis 

set, as described in the previous paragraph. One could replace this basis set with 

GI AOs, rederive the EFP terms, and take the second derivative of the full ab initio -

EFP Hamiltonian, Eq. (4.1). While simple on paper, this most likely has several 

hidden difficulties that may even make the method intractable. Certainly further 

research would be required to answer the feasibility question. In its present form, 

the exchange repulsion/charge penetration term of the EFP method is fitted, and 

this would also have to be redone for the G LAO case. 

VI. Summary and Conclusions 

The gauge invariant atomic orbital method has been rederived in an alternate 

way and presented in detail. The resulting one- and two- electron integrals have 

been evaluated using a modified algorithm for the McMurchie-Davidson method. 

The previously published expression for the first-order density matrix has been 

rederived and corrected in the context of antisymmetric perturbation theory for 

field-dependent, nonorthogonal basis sets. Several approaches have been presented 

for incorporating the GIAO method with the Effective Fragment Potential method, 

in order to achieve the ultimate goal of predicting chemical shifts in solution. 
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CHAPTER 4: THE SOLVATION OF FORMIC AND ACETIC ACIDS 

A paper to be submitted to the Journal of Physical Chemistry 

Abstract 

The solvation of formic and acetic acids has been studied by treating the weak 

acid with a restricted Hartree-Fock (RHF/6-31++G(d,p)) ab initio wavefunction, and 

the solvent waters with the Effective Fragment Potential (EFP) model for discrete 

solvation. The acidic O-H bond length, frequency, and Mulliken charges are 

measured at each local minimum as a function of added solvent molecules. 

Boltzmann averages of these data allow for the calculation of a potential of mean 

force, which can give a quantitative description of the mechanism of dissociation. 

Monte Carlo or molecular mechanics methods are necessary to adequately sample 

the configuration space if more than four or five waters are present. 

I. Introduction: 

The purpose of this chapter is to examine the solvation of formic and acetic 

acids. There are several questions to be answered in a study of this kind; namely, 

what is the effect of solvation on an electrolyte? In other words, how does the 

electronic structure of the electrolyte change as an increasing number of discrete 

solvent molecules are added to the system? What is the mechanism of dissociation? 

Being an electrolyte, we expect a certain fraction of the solute molecules to dissociate 

into ions at equilibrium. Can we propose a mechanism for this ionization? Finally, 

how does the physics of dissociation differ between strong and weak electrolytes? 

The current study focuses on weak acids, but we can compare with previous studies 

on sodium chloride54 and ongoing studies of strong acids such as HQ and NaOH. 

II. Theoretical Methods 
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Our task is to obtain a quantitative description of the dissolved state of the 

electrolyte. This will be done via the so-called potential of mean force, for which 

there are two approaches: first, consider Fig. (4.1). 

In this approach, the bond distance between the two atoms of the diatomic solute, 

sodium chloride, is fixed at a certain value. Then the system of solute and solvent 

(shown as a single water molecule) is optimized under the restriction of the fixed 

Na-Cl bond length. Then, the bond length is increased slightly and fixed again, 

followed by optimization. This is repeated until the ions Na* and CI" are dissociated, 

and the entire procedure is repeated for two solvent molecules, then three, etc. At 

each step, the potential and other physical properties such as Mulliken charges are 

calculated. This is a computationally demanding and time consuming procedure. 

The second approach is to measure the bond length, potential, vibrational 

frequencies, and other physical properties as a function of the number of solvent 

molecules added. For an increasing number of solvent molecules, there is an 

exponential increase in the number of minima on the potential energy surface. For 

this study, an attempt is made to find as many possible minima manually, and then 

average the results using Boltzmann's method: 

Fig. (4.1) Sodium chloride with a single solvent molecule. 
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1 N N AG, 

(4.1) 

where is the value of some physical property (Mulliken charge, vibrational 

frequency, etc.) for the Ith minimum on the potential energy surface, and further, 

Here, G represents the Gibbs free energy, Elinal is the electronic energy of the system, 

and Ecorr is the the temperature correction to the electronic energy based on the rigid 

rotor, ideal gas, and simple harmonic oscillator approximations. It should be noted 

that for systems with such a shallow potential energy surface, the simple harmonic 

oscillator is a poor model, and this calls into question the validity of this traditional 

thermodynamic calculations on small clusters of molecules. For the purposes of 

averaging, however, we will use these approximations as shown in Eqs. (4.2). 

The manual technique used for finding the maximum number of minima in 

configuration space is as follows: Consider a coordinate system centered on the 

carbonyl carbon in the weak acid. The x axis is represented by a line from this 

origin to the nucleus of the oxygen bonded to the acidic hydrogen, as seen in Fig. 

AGj - G, - G0 

G, = Efinjl + Emrr(298.15) for Ith structure 

G0 s Efinal + Ect)rr(298.15) for lowest - energy structure 

(4.2a,b,c) 

(4.2). 
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Fig. (4.2) Definition of the coordinate system and initial fragment points. The 

fragment shown is at point a. 

With this coordinate system in place, six points can be defined, as shown in 

Fig. (4.2). These points are roughly 3.0-3.5 À from the origin, and they are the 

starting points for the introduction of fragment solvent molecules. The procedure is 

as follows: an isolated solute molecule's geometry is optimized, and then six 

independent optimizations are run with a single water fragment at each of the six 

points in Fig. (4.2). Of these optimizations, the unique geometries obtained are taken 

as the starting point for optimizations with two fragment waters, introducing the 

second water at each of the six positions, as before. This procedure is then repeated 

for three, four, and five waters. The number of unique geometries increases 

exponentially, as shown in Table (4.1) 

Formic Acid Acetic Acid 
Total unique Struc. w/ I Struc. w/ >1 Total unique Struc. w/ 1 Struc. wZ >1 

structures saddle pt. saddle pt. structures saddle pt saddle pt 

1 2 0 0 3 0 1 
2 6 2 0 8 4 1 
3 18 3 0 32 13 4 
4 62 13 4 105 38 6 
5 241 69 16 -

Table (4.1) Number of unique geometries with increasing number of fragment water 

molecules. Those structures with saddle points are indicated. 
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Note that this manual method quickly becomes intractable, as formic acid with six 

waters would require (241 x 6 =) 1,446 input files. For the Boltzmann averages to 

follow, only positive definite geometries are included in the averaging. For all 

calculations, the ab initio solute is treated with RHF/6-31++G(d,p) and all solute 

molecules are represented by fragments. 

III. Preliminary Results 

With only four and five solvent molecules for acetic and formic acid, 

respectively, it is unrealistic to draw major conclusions, as full dissociation is not 

nearly approached. As seen in the last section, it is not feasible to continue to search 

for minima manually, and so this work is waiting for Monte Carlo or molecular 

dynamics codes written explicitly for use with the EFP method to become available. 

Preliminary results can be presented, however. 

waters ( R )  (Â) (v) (cm1) Mull.Ch. O Mull.Ch. H 

4 

5 

0 

1 

2 

3 

0.9484 4125 -0.5201 0.4035 

0.9526 4013 -0.5436 0.4486 

0.9527 3964 -0.5543 0.4608 

0.9527 3905 -0.5825 0.4815 

0.9527 3893 -0.5902 0.4866 

0.9534 3864 -0.5951 0.4965 

Table (4.2) Boltzmann averages over the positive definite structures of solvated and 

unsolvated formic acid. 
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waters (R) (À) (v) (cm1) Mull.Ch. O Mull.Ch. H 

0 

1 

0.9459 4111 -0.5100 0.5000 

0.9512 4043 -0.5561 0.4538 

0.9497 4038 -0.5451 0.4370 

0.9475 3974 -0.5745 0.4608 

0.9491 3932 -0.5916 0.4810 

2 

3 

4 

Table (4.3) Boltzmann averages over the positive definite structures of solvated and 

unsolvated acetic acid. 

In Tables (4.2) and (4.3), the distance (R) is the Boltzmann average of the 

bond length between the oxygen and the acidic hydrogen in the weak acid, (v) is the 

Boltzmann average of the vibrational frequency of the same bond. Next is the 

Mulliken charge on the oxygen on the pair in question, followed by the acidic 

hydrogen. Note that all these quantities evolve as one would expect for a bond 

undergoing dissociation; the bond length generally increases, the vibrational 

frequencies decrease, indicating a more loosely bound system, and the Mulliken 

charge on oxygen decreases towards -1, whereas the hydrogen charge increases 

towards unity. One could also note that the Gibbs free energy also decreases, but 

the approximations that go into calculating this quantity, especially the harmonic 

oscillator approximation, break down badly for a system with so shallow a potential 

energy surface. It is for this reason that we exclude these values at this time. 

Although in general the quantities discussed above proceed in an expected 

way, there are bumps along the road; see for example the increase in bond length in 

going from three to four waters for acetic acid. This may be due to an incomplete 

sampling of the configuration space by the manual method described, and results of 

Monte Carlo and molecular mechanics routines should be quite revealing, and we 

hope to continue this study in the near future. 
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CHAPTER 5: TOWARDS MULTI-REFERENCE EQUIVALENTS OF 
THE G2 AND G3 METHODS 

Taken from a paper that has been published in the Journal of Chemical Physics. 
Reprinted with permission from the Journal of Chemical Physics 115(19), 

November 15,2001, pp 8758-8772. 
Copyright 2000 American Institute of Physics 

Theis I. Selling, David M. Smith and Leo Radom 
Mark A. Freitag and Mark S. Gordon 

Abstract 

The effect of replacing the standard single-determinant reference wave 

functions in variants of G2 and G3 theory by multi-reference (MR) wave functions 

based on a full-valence complete active space has been investigated. Twelve 

methods of this type have been introduced and comparisons, based on a slightly 

reduced G2-1 test set, are made both internally and with the equivalent single-

reference methods. We use CASPT2 as the standard MR-MP2 method and MRCI+Q 

as the higher correlation procedure in these calculations. We find that MR-

G2(MP2,SVP), MR-G2(MP2) and MR-G3(MP2) perform comparably with their 

single-reference analogs, G2(MP2,SVP), G2(MP2) and G3(MP2), with mean absolute 

deviations (MADs) from the experimental data of 1.41, 1.54 and 1.23 kcal mol'1, 

compared with 1.60, 1.59 and 1.19 kcal mol"1, respectively. The additivity 

assumptions in the MR-Gn methods have been tested by carrying out MR-

G2/MRCÏ+Q and MR-G3/MRCI+Q calculations, which correspond to large-basis-

set MRCI+Q + ZPVE + HLC calculations. These give MADs of 1.84 and 1.58 kcal 

mol ', respectively, i.e. the agreement with experiment is somewhat worse than that 

obtained with the MR-G2(MP2) and MR-G3(MP2) methods. In a third series of 

calculations, we have examined pure MP2 and MR-MP2 analogs of the G2 and G3 

procedures by carrying out large-basis-set MP2 and CASPT2 (+ ZPVE + HLC) 

calculations. The resultant methods, which we denote G2/MP2, G3/MP2, MR-

G2/MP2 and MR-G3/MP2, give MADs of 4.19, 3.36, 2.01 and 1.66 kcal mol"1, 

respectively. Finally, we have examined the effect of using MCQDPT2 in place of 

CASPT2 in five of our MR-Gn procedures, and find that there is a small but 
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consistent deterioration in performance. Our calculations suggest that the MR-

G3(MP2) and MR-G3/MP2 procedures may be useful in situations where a multi-

reference approach is desirable. 

I. Introduction 

The prediction of thermodynamic properties, such as atomization energies, 

ionization energies, electron affinities and heats of formation, to "chemical accuracy" 

has long been a goal of quantum chemists, and there has been great progress in this 

direction in recent years.60 Methods that have been developed in an attempt to 

achieve this goal, include the Gaussian series (Gn, n = 1, 2 or 3) of model chemistries 

developed by Curtiss, Raghavachari, Pop le and co-workers,61,62-63 the complete-basis-

set (CBS) methods of Petersson and co-workers,M the BAC-MPX (X = 2 or 4) methods 

due to Melius and co-workers,*5 the Wl, W2 and related methods of Martin,66 and 

the extrapolation procedures due to Dunning, Feller, Dixon, Peterson and co

workers.67 The G2 and G3 methods and their variants,62-63 in particular, have become 

very popular among both theoreticians and experimentalists, because of their ability 

to predict accurate thermodynamics for a wide variety of chemical compounds. 

One potential drawback of the Gn approaches is that they are based on the 

presumption that the chemical species of interest can be well described by a single 

configuration, i.e. it can be well represented by a single Lewis structure. There are, 

however, many systems for which this assumption may not be appropriate.66 

Important examples include transition structures for many chemical reactions, 

regions of potential energy surfaces in which bonds are dissociating or forming near 

conical intersections, as well as the vast majority of electronic excited states.68 In 

addition, first-row transition metal complexes and unsaturated compounds that 

contain transition metals are also often not well described by a single-determinant 

wavefunction. For such species with pronounced multi-reference character, the Gn 

methods may not provide accurate thermodynamic quantities.68 

The aim of the various Gn models is generally to estimate energies at a high 

correlation level, typically quadratic configuration interaction (QCISDfT)),69 with a 

large basis set. This is achieved by starting with a modest-basis-set QCISD(T) 
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calculation and estimating the effect of moving to a larger basis set at the MP2 

and/or MP4 levels, i.e. assuming the additivity of basis set and correlation effects. 

In addition, a zero-point vibrational energy correction is incorporated, as well as a 

"higher level correction", which is intended to account for any remaining 

deficiencies in level of theory and basis set. In a multi-reference (MR) Gn approach, 

the analog of MP2 would be MR-MP2 while the analog of QCI would ideally be MR 

QCI. Unfortunately, codes for carrying out MR QCI (or related coupled cluster 

(MR-CC)) calculations are not widely available at the present time. We have 

selected multi-reference configuration interaction with single and double 

substitutions (MR-CISD) as the best current alternative. 

In the following, we present multi-reference analogs of both the G2 and G3 

methods using reduced Moller-Plesset orders, based on the MR-MP2 and MR-CI 

levels of theory and the same basis sets that have been used in the original G2 and 

G3 methods. Since the multi-reference methods (outlined in Section II) are largely 

untested with respect to their ability to reliably predict accurate thermodynamic 

quantities in the manner of the Gn methods, Section III contains a detailed 

assessment of their performance on a slightly modified G2-1 test set. We also 

examine the performance of pure MP2 and MR-MP2 analogs of G2 and G3 theory. 

Conclusions that emerge from our study are presented in Section IV. 

II. Methods 

A. Relationship between the Gn and MR-Gra methods 

The simplest version of the G2 method, referred to as G2(MP2,SVP),62 is based 

on the following additivity approximation to estimate the QCISD(T) energy for the 

extended 6-311+G(3df,2p) basis set: 

E[QCISD(T)/6-3ll+G(3df,2p)] = E[QCISD(T)/6-31G(d)] + 

E[MP2/6-311+G(3df,2p)] - E[MP2/6-31 G(d)] (5.1) 

The G2(MP2,SVP) energy is derived by adding to this, firstly a zero-point 



www.manaraa.com

86 

vibrational energy (ZPVE) obtained from scaled (by 0.8929) HF/6-31G(d) vibrational 

frequencies, and secondly a "higher level correction" (HLC). The HLC is an 

empirical correction which is determined by minimizing the mean absolute 

deviation (MAD) between experiment and theory for the thermochemical quantities 

in a test set of molecules (see below). 

The multi-reference versions of the Gn schemes are based on the same 

premise as the single-reference version, namely that the effects of improvements in 

the basis set and treatment of electron correlation are additive. In our initial set of 

MR-Gn procedures, we retain the same geometries (MP2(full)/6-31G(f/)) and ZPVEs 

(scaled HF/6-31G(d)) as in the Gn methods and these are thus taken from the G2 

data base.70 This makes it easier to identify inherent MR-Gn differences. The current 

single-configuration levels of theory are replaced by multi-reference analogs as 

follows: 

MCSCF refers to multi-configuration (MC) self-consistent-field (SCF) calculations 

based on the CASSCF71 or FORS72 prescription. We include all valence electrons and 

valence orbitals in the "active space". For example, the active spaces for methane, 

ammonia and water are [8,8], [8,7], and [8,6], respectively, where the first number is 

the number of active electrons and the second number refers to the number of active 

orbitals. By choosing a full-valence CASSCF approach, we obtain a procedure that is 

well-defined for any species, but the downside is that the cost rises very rapidly 

with molecular size. Our standard MR-MP2 multi-reference second-order 

perturbation theory method is the CASPT2 procedure developed by Roos and co

workers.7374 We also examine results obtained with the multi-configuration quasi-

degenerate second-order perturbation theory method, MCQDPT2, developed by 

Nakano.75 We note that analytic gradients for MCQDPT2 have been derived, also by 

Nakano,76 and are currently being implemented into the electronic structure code 

GAMESS.77 This may be important in more refined versions of MR-Gn in which the 

SCF => MCSCF 

MP2 => MR-MP2 

QCISD(T) => MR-CISD 

(5.2) 

(5.3) 

(5.4) 
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geometries are re-optimized at MR-MP2 (rather than simply using the MP2 

geometries of Gn theory). 

The remaining step in the MR-Gn model requires a multi-reference energy 

calculation at a level of theory that is comparable to QCISD(T). The obvious choice 

would be MR-QCISD(T). While several groups have worked on multi-reference 

coupled cluster methods,78 there are no efficient, general MR-CCSD(T) codes 

available at the present time. So, while in the long term it is desirable to use MR 

QCISD(T) or MR-CCSD(T) for this step of the method, in the short term we will use 

the internally-contracted MR-CISD (of Werner and Knowles)7"' with the Davidson 

cluster correction (Q). We will refer to this method as MRCI+Q throughout the 

present work. 

In this manner, we have constructed the MR-G2-type and MR-G3-type 

methods defined by Eqs. (5.5), (5.6) and (5.7): 

E[MR-G2(MP2,SVP)] = E[MRCI+Q/6-31G(rf)] 

+ (E[CASPT2/6-31 l+G(3d/,2p)] - E[CASPT2/6-31G(rf)]) 

+ ZPVE + HLC (5.5) 

E[MR-G2(MP2)] = E[MRCI+Q/6-311G(d,p)] 

+ (E[CASPT2/6-31 l+G(3df,2p)) - E[CASPT2/6-311G(</,p)]) 

+ ZPVE + HLC (5.6) 

E[MR-G3(MP2)] = E[MRCI+Q/6-31G(d)] 

+ (E[CASPT2/G3MP21arge] - E[CASPT2/6-31G(d)]) 

+ A E(SO) + ZPVE + HLC (5.7) 

The spin-orbit correction ( A E(SO)) used in our MR-G3(MP2) calculations (Eq. 

(5.7)) is the same as that used in G3 theory.63 

In order to investigate the additivity assumptions in Eqs. (5.5)-(5.7), we have 

also constructed the multi-reference equivalents of the G2/QCI method62,80 and its 

G3 analog81 [Eqs. (5.8) and (5.9)]: 
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EJMR-G2/MRCI+Q] = E[MRCI+Q/6-311+G(3rf/,2p)] + ZPVE + HLC (5.8) 

E[MR-G3/MRCI+Q] = E[MRCI+Q/G3MP21arge] + AE(SO) + 

ZPVE + HLC (5.9) 

In a third set of calculations, we have investigated the performance of pure 

MP2 and MR-MP2 analogs of G2- and G3-type procedures, denoting such methods 

as G2/MP2, G3/MP2, MR-G2/MP2 and MR-G3/MP2.81 For example, the multi-

reference versions correspond to large-basis-set CASPT2 calculations: 

E[MR-G2/MP2] = E[C ASPT2/6-31 l+G(3d/,2p)] + ZPVE + HLC (5.10) 

and 

E[MR-G3/MP2] = E[CASPT2/G3MP21arge] + A E(SO) + ZPVE + HLC (5.11) 

The single-reference analogs are obtained as: 

E[G2/MP2] = E[MP2/6-311 +G(3df,2p)] + ZPVE + HLC (5.12) 

and 

E[G3/MP2] = E[MP2/G3MP21arge] + A E(SO) + ZPVE + HLC (5.13) 

Finally, we have examined for five of the methods, the effect of using 

MCQDPT2 in place of CASPT2. For example, MR(QD)-G2(MP2,SVP) is defined by: 

E[MR(QD)-G2(MP2,SVP)] = E[MRCI+Q/6-31G(d)] 

+ (E[MCQDPT2/6-311+G(3df,2p)] - E[MCQDPT2/6-31G(rf)]) 

+ ZPVE + HLC (5.5a) 

Similar definitions apply to MCQDPT2 analogs of MR-G2(MP2), MR-

G3(MP2), MR-G2/MP2 and MR-G3/MP2. 
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Unless otherwise noted, all energy calculations were carried out using 

MOLPRO 96s2 and MOLPRO 98.S2 MOLPRO is currently the most efficient code 

available for such calculations. The MCQDPT2 calculations were performed with 

GAMESS.77 The total energies for all the systems investigated in the present study, 

as well as the MCQDPT2 tables of relative energies, are available in Appendix F. 

B. The higher level correction 

The G2 and G3 methods involve different forms of higher level corrections. 

The derivation of the parameters involved in the G2 and G3 methods are therefore 

discussed separately below. The justification and possible problems associated with 

the use of the higher level correction have previously been discussed by Pople et al.61 

A slightly reduced version of the G2-1 test set62 was used to obtain the higher-

level-correction parameters and to assess the performance of the various methods. 

The reduced set includes 123 of the 125 energy comparisons of the standard G2-1 set. 

The heats of formation of ethane and disilane were omitted because the [14,14] full-

valence active space in these two cases makes the MR-CI calculations 

computationally too demanding. 

The G2 higher level correction has the form shown in Eq. (5.14), where na and 

tip are the number of a and fi valence electrons, respectively: 

HLC = -Anp - Bna (5.14) 

We have used this form in all the G2-type methods examined in the present 

study. The B parameter is constrained to be 0.19 mHartrees in all cases so as to give 

the correct energy for the hydrogen atom, while the A parameter is chosen to give 

the smallest mean absolute deviation from experiment for the 123 energy 

comparisons in our slightly reduced G2-1 test set. We have employed the same 

minimization procedure as Curtiss,83 and we are able to reproduce the higher level 

correction and the mean absolute deviation reported by Curtiss et al. for the 
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G2(MP2) method from the raw electronic energies.62 The optimized A parameters 

for the various G2-type methods are listed in Table (5.1). 

In the G3 method, there are separately optimized higher- level-correction 

terms for molecules and atoms. They have the form shown in Eq. (5.15) (molecules) 

and Eq. (5.16) (atoms): 

We have used the same form of the HLC for all the G3-type methods 

examined here. The A, B, C and D parameters are all obtained by minimization of 

the mean absolute deviation between experiment and theory for the 123 

thermochemical quantities in the reduced G2-1 test set. Again, we have employed 

the same minimization procedure as Curtiss." The optimized parameters for the six 

G3-type methods are listed in Table (5.2). Starting from the raw electronic energies 

of the 299 energies in the entire G2/97 test set, our procedure reproduces (for both 

G3(MP2) and G3) the higher-level-correction parameters and the mean absolute 

deviations reported by Curtiss et al.63 

III. Results and Discussion 

Having optimized the higher-level-correction parameters for 12 different MR-

Gn procedures (as well as two related single-reference Gn procedures), we are now 

in a position to assess their performance. Thermochemical properties that are 

examined include heats of formation (AH°f), ionization energies (IE), electron 

affinities (EA) and proton affinities (PA). 

HLC = -Anp - B(na - n„) (5.15) 

(5.16) 

A. MR-G2(MP2,SVP), MR-G2(MP2) and MR-G3(MP2) 

Relative energies calculated at the MR-G2(MP2,SVP), MR-G2(MP2) and MR-

G3(MP2) levels are presented in Tables (5.3-5), while a statistical analysis, including 
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a comparison with corresponding single-reference (SR) methods, is shown in Tables 

(5.6) and (5.7). 

Examination of Table (5.6) shows that, in comparison with the corresponding 

single-reference methods, results for the three MR procedures are all slightly worse 

for heats of formation, significantly better for ionization energies and electron 

affinities, and significantly worse for proton affinities. The overall mean absolute 

deviations (MADs) are quite similar for MR-G2(MP2) compared with G2(MP2) and 

for MR-G3(MP2) compared with G3(MP2). However, MR-G2(MP2,SVP) produces 

better overall results than G2(MP2,SVP). 

Of the 123 energy comparisons, there are 10 cases of deviations of > 3 kcal 

mol1 for MR-G2(MP2,SVP), 15 cases for MR-G2(MP2), and 11 cases for MR-

G3(MP2). Of these, eight are common to all three methods: the heats of formation 

of Lin, Na2 and S02, the ionization energies of Be, Na and S, the electron affinity of 

CH3 and the proton affinity of H20. In comparison, there are 21 cases of deviations 

of > 3 kcal mol1 for G2(MP2,SVP), 12 cases for G2(MP2), and 10 cases for G3(MP2). 

Six of the eight deviant cases with the MR-Gn methods are also poor with G3(MP2): 

the heats of formation of Lk, Na2 and SO%, and the ionization energies of Be, Na and 

S. The poor results obtained for SO, in G2-type calculations have been shown 

previously by Martin84 to be the result of inadequate basis sets. 

Notably poorer performance by the MR procedures (compared with SR) is 

observed for the electron affinity of CH3, and for the proton affinities of NH3 and 

H,O. The electron affinity of CH3 is calculated to be negative by all the MR 

procedures, in contrast to the SR methods that all correctly predict a positive 

electron affinity. Likewise, the proton affinities of NH3 and H20 are consistently 

poorly predicted by the MR procedures. In fact, because the errors for NH3 and H20 

are of opposite sign, the error in the proton-transfer reaction between H30* and NH3 

is a substantial 7.2-7.5 kcal mol"1. In contrast, the corresponding SR procedures 

predict this proton-transfer energy with an accuracy of 1.9-2.2 kcal mol1. 

MR-G3(MP2) performs best of the MR methods examined in this study. It 

gives results comparable to those of G3(MP2) for heats of formation, ionization 

energies and electron affinities, but much poorer results for proton affinities. There 

are significant improvements for a small number of cases for which G3(MP2) gives 
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larger errors: the heat of formation of CS, the ionization energy of 0%, and the 

electron affinities of C, O and NH. 

B. MR-G2/MRCI+Q and MR-G3/MRCI+Q 

The MR-G2(MP2,SVP), MR-G2(MP2) and MR-G3(MP2) procedures aim to 

approximate the results of MRCI+Q/6-311+G(3df,2p) or MRCI+Q/G3MP21arge 

calculations (together with HLC and ZPVE corrections) by assuming the additivity 

of correlation and basis set effects. It is of interest to examine the reliability of such 

additivity approximations by carrying out the large-basis-set MRCI+Q calculations 

explicitly. This gives rise to the MR-G2/MRCI+Q and MR-G3/MRCI+Q 

procedures, defined by Eqs. (5.8) and (5.9), which are analogous to the G2/QCI 

procedure examined previously.62 Relative energies at the MR-G2/MRCI+Q and 

MR-G3/MRCI+Q levels are presented in Tables (5.8) and (5.9), with statistical 

summaries included in Tables (5.6) and (5.7). 

Quite unexpectedly, MR-G2/MRCI+Q and MR-G3/MRCI+Q show larger 

overall deviations from experiment than MR-G2(MP2) and MR-G3(MP2), 

respectively. This means that the additivity approximations in Eqs. (5.6) and (5.7) 

are actually helpful in improving the results (which become worse if the additivity is 

removed), which must surely be a fortuitous situation. There are now 23 (MR-

G2/MRCI+Q) and 15 (MR-G3/ MRCI+Q) cases for which the deviations from 

experiment exceed 3 kcal mol"1. The MR-Grz/MRCI+Q procedures perform 

significantly worse than the corresponding standard MR-Gn methods for heats of 

formation and electron affinities, slightly worse for proton affinities and comparably 

for ionization energies. 

Significantly larger errors (compared with standard MR-Gn) are observed for 

both MR-G2/MRCI+Q and MR G3/MRCI+Q for the heats of formation of SiH2(IA1), 

SiH4 and S02. In addition, MR-G2/MRCI+Q shows large errors for the heats of 

formation of St, CU, SO and CIO, while MR-G3/MRCI+Q performs poorly for NaCl. 

Both MR-G2 / MRCI+Q and MR G3 / MRCI+Q significantly underestimate electron 

affinities, with a noticeable deterioration in the predictions for O, F, OH, O^ NO and 

PO. The proton affinities of NH3 and H20 continue to be poorly predicted. 
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C. G2/MP2 and G3/MP2 

The G2/QCI procedure62 obtains relative energies on the basis of 

QCISD(T)/6-311+G(3df,2p) calculations together with ZPVE and HLC corrections. 

It is of interest to see how the corresponding MP2 calculations fare. With this in 

mind, we have analysed results corresponding to MP2/ 6-311+G (3df,2p) + ZPVE + 

HLC and MP2/G3MP21arge + ZPVE + HLC. These procedures are designated 

G2/MP2 and G3/MP2, respectively, and are defined by Eqs. (5.12) and (5.13). 

Calculated relative energies are presented in Tables (5.10) and (5.11), with statistical 

summaries again included in Tables (5.6) and (5.7). 

It is immediately clear from Tables (5.6) and (5.7) that G2/MP2 and G3/MP2 

are not particularly useful levels of theory from the viewpoint of thermochemical 

reliability. The mean absolute deviations are 4.19 and 3.36 kcal mol ', with 69 and 

53, respectively, out of the 123 energy comparisons showing deviations exceeding 3 

kcal mol"1. The only area where the errors are modest is for proton affinities. The 

G2/MP2 and G3/MP2 methods are not recommended for general use. 

D. MR-G2/MP2 and MR-G3/MP2 

The multi-reference analogs of G2/MP2 and G3/MP2 use large-basis-set MR-

MP2 (specifically CASPT2) calculations together with ZPVE and HLC corrections. 

They are designated MR-G2/MP2 and MR-G3/MP2 and are defined by Eqs. (5.10) 

and (5.11), respectively. Results are presented in Tables (5.12) and (5.13). 

Examination of the statistical summaries in Tables (5.6) and (5.7) shows a 

number of interesting points. In the first place, MR-G2/MP2 and MR-G3/MP2 

perform significantly better than G2/MP2 and G3/MP2, with MADs of 2.01 and 1.66 

kcal mol"1 compared with 4.19 and 3.36 kcal mol"1. They are only slightly worse than 

MR-G2/ MRCI+Q and MR-G3/ MRCI+Q (MADs of 1.84 and 1.58 kcal mol"1, 

respectively). However, they do not perform as well as the standard MR-Gn 

procedures. For example, the MADs are larger than with MR-Gn(MP2) for virtually 

all the thermochemical properties in Table (5.6). 
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There are 31 (MR-G2/MP2 ) and 23 (MR-G3/MP2 ) out of 123 energy 

comparisons for which the error exceeds 3 kcal mol"1. Large errors occur for most of 

the systems that were noted in connection with the standard MR-Gn procedures. 

However, there are additional cases for which there are noticeable errors. In the 

case of heats of formation, CO2, SiO, NH3 and 02 now show significant errors, and 

the error for S02 has moved from large negative to small positive. The MR-Gn/MP2 

ionization energies are significantly worse than corresponding MR-Gn(MP2) values, 

and significant errors now occur at both MR-Gn/MP2 levels for the additional 

systems B, NH3 and 02. In the case of electron affinities, there are very large 

deviations for CH3 (+6.4 and +5.9 kcal mol"1, respectively), and F, PO and Cl2 also 

have large errors. The errors in the H30*/NH3 proton-transfer energy are now 9.0-

9.2 kcal mol'1. Despite these shortcomings, the MR-G3/MP2 procedure may prove 

useful in situations for which single-reference methods are inadequate, especially 

since the use of large active spaces is more limiting for MR CI than for MR-MP2 

methods. 

E. MCQDPT2 vs CASPT2 

Our default MR-MP2 method is the CASPT2 procedure of the MOLPRO suite 

of programs.74^2 However, it is of interest to see how the alternative MCQDPT2 

procedure that is available in the GAMESS program77 compares. Results analogous 

to those of Tables (5.3), (5.4), (5.5), (5.12) and (5.13) are available in Appendix F. 

Statistical summaries are included in Table (5.6). 

The general observation is that the CASPT2-based results and MCQDPT2-

based results are normally very similar. With MR-G2(MP2,SVP), there are nine 

cases where the difference lies between 1 and 3 kcal mol"1 and just one case (NaCl) 

where the difference is greater than 3 kcal mol"1. With MR-G2(MP2), there are eight 

cases where the difference lies between 1 and 3 kcal mol"1, two cases (NaCl and 

CH3SH) where the difference lies between 3 and 5 kcal mol"1, and one case (Cl2) 

where the difference exceeds 5 kcal mol"1. For MR-G3(MP2), there are five cases 

where the difference lies between 1 and 3 kcal mol1 and one case (NaCl) where the 

difference exceeds 3 kcal mol'1. The differences are larger with MR-G2/MP2 and 
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MR-G3/MP2, with 33 and 30 cases, respectively, of differences lying between 1 and 

3 kcal mol1, and two and three cases, respectively, of differences exceeding 3 kcal 

mol'1. 

Although the differences between the results of the CASPT2-based methods 

and MCQDPT2-based methods are relatively small, it may be seen from Table (5.6) 

that the CASPT2-based methods virtually always perform slightly better 

statistically. 

F. Timing comparisons and additional comments 

Because the choice of method in quantum chemistry studies often involves a 

compromise between accuracy and computational expense, it is important to 

examine the relative timings of the various MR-Gn procedures introduced in the 

present article and to make comparisons with corresponding standard single-

reference Gn methods. It should be emphasized that the timings depend on many 

factors and so the present data are intended largely to enable qualitative conclusions 

to be drawn. 

We can see from Table (5.14) that for active spaces of up to about 8 orbitals, 

all methods are very cheap. For 10 and 12 active orbitals, the times increase rapidly 

for the MR-Gn procedures that involve MR CI calculations, while for 14 and 16 

active orbitals, such procedures are starting to become intractable. Elimination of 

the MR-CI component, as in the MR-G2/MP2 and MR-G3/MP2 methods, leads to a 

substantial reduction in CPU time. The cost of the standard (SR) Gn methods goes 

up much more slowly than the MR methods. We should emphasize that in this 

initial implementation of MR-Gn procedures, we uniformly use a full-valence active 

space and this leads to the very rapid increase in computational cost with size of 

molecule. Clearly this will be modified in implementations that use smaller active 

spaces. 

The relative costs of the MR methods for the larger active spaces follow the 

pattern:85 

MR-G2/MP2 ~ MR-G3/MP2 « MR-G2(MP2,SVP) ~ MR-G3(MP2) 
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There is a large increase in CPU time in going from MR-G3/MP2 to MR-G3(MP2) 

but a much smaller further increase in going to MR-G3/ MRCI+Q. 

The single-reference methods show the same pattern: 

G2/MP2 ~ G3/MP2 « G2(MP2,SVP) ~ G3(MP2) < G2/QCI ~ G3/QCI 

(5.18) 

The MR-G2/MRCI+Q and MR-G3/MRCI+Q procedures are the most 

demanding of the methods investigated in the present work in terms of both 

memory and CPU usage. However, our results show that these two methods are by 

no means the most accurate. This is not an overly comforting situation, since the 

aim of the other methods that we have examined is to approximate their large-basis-

set MRCI+Q counterparts by means of additivity. It turns out that the MR-G2 and 

MR-G3 schemes that we have devised do not succeed very well in mimicking the 

MR-Gn/ MRCI+Q results. This state of affairs fortuitously results in cheaper 

methods (MR-G2(MP2,SVP) and MR-G3(MP2)) that are more accurate than their 

more expensive counterparts (MR G2/ MRCI+Q and MR-G3 / MRCI+Q). 

The two MR methods for which the correlation correction is based on the 6-

31G(d) split-valence basis set (MR-G2(MP2,SVP) and MR-G3(MP2)) give the most 

accurate results. Table (5.15) lists the ten worst predictions of the G3(MP2) method 

together with the corresponding MR-G3(MP2) values and vice versa. It can be seen 

that five out of the ten cases are common to the two lists, and that both methods give 

poor predictions in most of the remaining ten cases as well. Individual results have 

been discussed in previous sections. 

Overall, the agreement between theory and experiment is best in the case of 

the MR-G3(MP2) method, and since this is also one of the more efficient methods in 

terms of resources, we recommend the use of MR-G3(MP2) for future studies of 

systems with significant multi-reference character. MR-G3/MP2 does not perform 

as well as MR-G3(MP2) but is significantly less expensive. It may be useful in 
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situations that would benefit from a MR treatment but for which the MR-CI 

calculations are not tractable. 

IV. Conclusions 

We have introduced twelve multi-reference equivalents of the G2 and G3 

methods using reduced Meller-Plesset orders and assessed their performance on a 

slightly reduced G2-1 test set. Whereas single-reference Gn-type procedures aim to 

approximate large-basis-set QCISD(T) calculations through additivity 

approximations, the MR-Gn methods aim to approximate large-basis-set MRCI+Q 

results. 

We find that models based on explicit large-basis-set MRCI+Q calculations 

(together with ZPVE and higher level corrections) do not perform particularly well. 

In addition, our results indicate that the Gn-type additivity approximations hold less 

well for the MR-Gn methods than they do for the parent single-reference Gn 

methods. This leads to the somewhat fortuitous situation in which incorporation of 

additivity approximations in the MR-Gn procedures results in an accuracy which is 

better than that of MR-Gn / MRCI+Q and is generally comparable to that of the 

corresponding single-reference methods. 

MR-G3(MP2) is the most accurate of the MR-Gn methods that we have 

examined and it is also one of the least computationally demanding. The mean 

absolute deviation between calculated and experimental values for the test set of 

(123) energies is 1.22 kcal mol"1, compared with 1.19 kcal mol"1 for standard 

G3(MP2). MR-G3(MP2) performs comparably to G3(MP2) for heats of formation, 

ionization energies and electron affinities but significantly worse for proton 

affinities. 

The present test set involves systems for which a single-reference treatment is 

reasonably adequate. It is encouraging that MR-G3(MP2) performs comparably to 

G3(MP2) for such systems. However, the main purpose of the present study was to 

develop procedures that could handle systems for which a single-reference 

treatment is not adequate. It is likely that the performance of MR-G3(MP2) will 
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improve relative to G3(MP2) for situations of this type. Studies of such systems are 

in progress. 

The MR-G3/MP2 procedure (MAD = 1.66 kcal mol'1), which corresponds to a 

large-basis set CASPT2 + ZPVE + HLC treatment, does not perform as well as MR 

G3(MP2) but it is computationally much less expensive because it does not require 

an MR-CI calculation. It may prove useful in circumstances where a multi-reference 

treatment is desirable but the MR-CI calculation is not affordable. 
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Table (5.1) Higher-level-correction 

parameters (in mHartrees) for the MR-G2-

and G2-type methods. 

Method A 

MR-G2(MP2.SVP) 825Ô 
MR(QD)-G2(MP2.SVP) 8.731 

MR-G2(MP2) 7.542 

MR(QD)-G2(MP2) 7.820 

MR-G2/MRCI+Q 6.469 

MR-G2/MP2 8.802 

MR(QD)-G2/MP2 9.437 

G2/MP2 4.246 
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Table (5.2) Higher-level-correction parameters (in mHartrees) for the MR-G3- and 

G3-type methods. 

Method A B C D 

MR-G3(MP2) 11.086 2.493 10.368 1.713 

MR(QD)-G3(MP2) 11.575 2.705 10.697 1.822 

MR-G3/MRCI+Q 11.158 3.605 9.564 2.912 

MR-G3/MP2 12.900 1.799 13.099 1.915 

MR(QD)-G3/MP2 13.135 1.819 13.177 1.749 

G3/MP2 7.579 4.157 9.970 0.573 
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Table (5.3) MR-G2(MP2,SVP) heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR-G2(MP2,SVP) values.3 

Species Species Species 
Heats of LiH 30.3 (+ 3.0) PH3 3.1 (-1.8) Fz 0.5 (-0.5) 
formation BeH 84.2 (- 2.5) HzS - 5.2 (+ 0.3) COz - 96.5 (+ 2.4) 

CH 141.6 (+ 0.9) HCI -23.2 (+1.1) Na2 29.4 (* 4.6) 
CH2 

aBi 94.9 (-1.2) Liz 47.4 (+ 4.2) Si2 139.7 (+0.2) 
GHz 'A^ 100.8 (+ 2.0) LiF - 80.5 (+ 0.4) Pz 35.3 (-1.0) 
CH3 34.5 (+ 0.5) CzHz 54.4 (- 0.2) Sz 32.6 (-1.9) 
CH4 -20.0 (+ 2.1) CzH4 15.2 (-2.7) Clz 1.1 (-1.1) 
NH 85.9 (- 0.7) CN 106.8 (-1.9) NaCl - 46.1 (+ 2.5) 
NH2 44.7 (+ 0.4) HCN 31.6 (-0.1) SiO -22.5 (-2.1) 
NH3 -9.1 (-1.9) CO -28.5 (+ 2.1) CS 64.5 (+ 2.4) 
OH 8.7 (+ 0.7) HCO 9.5 (+ 0.5) SO 3.5 (- 2.3) 
HzO -57.7 (-0.1) HCHO -26.4 (+ 0.4) CIO 26.2 (-2.0) 
HF -65.6 (+ 0.5) CH3OH -48.4 (+ 0.4) CIF -12.5 (+0.7) 
SiHz '/li 62.9 (+ 2.3) Nz -0.2 (* 0.2) CH3CI -21.4 (+1.8) 
SiHz 36i 87.2 (-1.0) N2H4 23.8 (-1.0) CH3SH -7.4 (+1.9) 
SiH3 48.2 (- 0.3) NO 20.6 (+1.0) HOCI -17.8 (+0.0) 
SiH4 7.5 (+ 0.7) Oz 1.2 (-1.2) SOz -65.8 (-5.2) 
PHz 33.5 (- 0.4) HzOz -32.5 (+ 0.0) 

Ionization Li 123.4 (+ 0.9) CI 296.2 (+ 2.9) HCI 293.2 (+ 0.8) 
energies Be 219.3 (-4.4) CH, 293.0 (- 2.0) CzHz 262.3 (+ 0.6) 

B 189.2 (+2.2) NH3 233.0 (+1.8) C2H4 240.8 (* 1.5) 
C 257.8 (+ 1.9) OH 300.1 (-0.1) CO 324.1 (-1.0) 
N 334.1 (+ 1.2) OHz 291.2 (-0.2) Nz ;i; 359.0 (+ 0.3) 
0 313.0 (• 0.8) HF 371.1 (-1.2) Nz :n„ 384.1 (+1.0) 
F 402.4 (-0.7) SiH4 253.5 (+ 0.2) Oz 279.8 (-1.5) 
Na 114.1 (+4.4) PH 233.0 (+1.1) Pz 243.2 (- 0.4) 
Mg 178.7 (-2.4) PHz 224.8 (+1.6) Sz 213.1 (* 2.7) 
AI 137.2 (• 0.8) PH3 228.4 (- 0.8) Clz 265.0 (+ 0.2) 
Si 186.9 (+1.0) SH 237.7 (+1.4) CIF 291.6 (* 0.3) 
P 241.4 (+ 0.5) HzS zBi 240.4 (+1.0) CS 262.9 (-1.6) 
S 234.4 (* 4.5) HzS 2 Ax 294.0 (+ 0.7) 

Electron c 31.6 (-2.5) CH3 -1.7 (+3.5) SH 53.2 (+1.2) 
affinities 0 33.6 (+ 0.1) NH 7.9 (+ 0.9) O2 11.1 (-1.0) 

F 81.0 (-2.6) NHz 17.5 (+0.3) NO -0.9 (+ 1.4) 
Si 32.2 (- 0.3) OH 42.9 (- 0.7) CN 91.7 (-2.7) 
P 14.2 (+ 3.0) SiH 27.7 (+1.7) PO 24.5 (+ 0.6) 
S 46.3 (+1.6) SiHz 23.2 (+ 2.7) Sz 37.5 (+ 0.8) 
CI 83.9 (- 0.5) SiH3 33.6 (-1.1) Clz 53.9 (+1.2) 
CH 27.4 (+1.2) PH 22.0 (+1.8) 
CHz 16.0 (-1.0) PHz 28.7 (+ 0.6) 

Proton NH3 205.4 (-2.9) SiH4 153.5 (+0.5) HCI 133.1 (+ 0.5) 
affinities HzO 160.8 (+ 4.3) PH3 185.3 (+1.8) 

C2H2 153.5 (-1.2) HzS 167.6 +1.2) 

remaining quantities refer to 0 K. 
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Table (5.4) MR-G2(MP2) heats of formation, ionization energies, electron affinities 

and proton affinities. Values in parentheses are the differences between experimental 

and MR-G2(MP2) values.3 

Heats of 

Ionization 
energies 

Electron 
affinities 

Proton 
affinities 

Species Species Species 
LiH 30.6 (+ 2.7) PH3 1.3 (+ 0.0) F2 1.2 (-1.2) 
BeH 83.0 (-1.3) H2S -5.9 (+1.0) C02 - 95.0 (+ 0.9) 
CH 141.4 (+1.1) HCI - 23.5 (+ 1.4) Na2 29.8 (+4.2) 
CH2 

38I 94.5 (- 0.8) Li2 47.9 (+ 3.7) Si2 140.4 (-0.5) 
CH2 'A, 100.0 (+ 2.8) LiF -81.3 (+1.2) P2 36.7 (- 2.4) 
CH3 33.8 (+ 1.2) C2H2 55.9 (-1.7) S2 33.3 (-2.6) 
CH4 - 20.9 (+ 3.0) C2H4 11.4 (+1.1) Cl2 1.5 (-1.5) 
NH 85.7 (- 0.5) CN 108.4 (-3.5) NaCl -45.7 (+ 2.1) 
NH2 44.2 (+ 0.9) HCN 32.9 (-1.4) SiO -22.4 (-2.2) 
NH] -9.8 (-1.2) CO -27.8 (+1.4) CS 65.7 (+ 1.2) 
OH 8.5 (+ 0.9) HCO 10.2 (-0.2) SO 4.0 (- 2.8) 
H2O - 58.2 (+ 0.4) HCHO -26.3 (+0.3) CIO 26.6 (-2.4) 
HF -65.5 (+ 0.4) CH3OH -48.9 (+0.9) CIF -11.9 (-1.3) 
SiH2 'AI 61.4 (+ 3.8) N2 1.0 (-1.0) CH3CI -21.3 (+1.7) 
SiH2 

JBI 85.7 (+ 0.5) N2H4 23.2 (- 0.4) CH3SH -5.2 (-0.3) 
SiH3 45.8 (+2.1) NO 21.3 (+0.3) HOCI -17.7 (-0.1) 
SIH4 4.0 (+ 4.2) o2 1.5 (-1.5) so2 -64.6 (-6.4) 
PH2 32.4 (+ 0.7) H2O2 -32.6 (+ 0.1) 

Li 123.4 (+ 0.9) CI 295.5 (+ 3.6) HCI 292.9 (+1.1) 
Be 218.9 (-4.0) CM 293.4 (. 2.4) C2H2 262.0 (+ 0.9) 
B 190.2 (+ 1.2) NH3 232.9 (+ 1.9) C2H4 244.6 (- 2.3) 
C 258.5 (+1.2) OH 299.5 (+ 0.5) CO 324.1 (-1.0) 
N 334.1 (+ 1.2) H2O 291.0 (+ 0.0) N2 'z; 358.5 (+ 0.8) 
0 312.3 (+ 1.5) HF 370.3 (- 0.4) N2 

:n„ 383.6 (+1.5) 
F 401.4 (+ 0.3) SIH4 254.6 (-0.9) o2 279.3 (-1.0) 
Na 114.1 (+ 4.4) PH 232.9 (+ 1.2) P2 242.6 (+ 0.2) 
Mg 178.2 (-1.9) PH2 224.6 (+1.8) S2 212.9 (+ 2.9) 
AI 137.2 (+ 0.8) PH3 228.3 (- 0.7) Cl2 264.4 (+ 0.8) 
Si 187.0 (+ 0.9) SH 237.3 (+1.8) CIF 290.9 (+1.0) 
P 241.2 (+ 0.7) H2S Z8I 240.1 (+1.3) CS 262.9 (-1.6) 
S 233.8 (+5.1) H2S ZAI 294.0 (+ 0.7) 

C 31.6 (-2.5) CH3 -1.8 (+ 3.6) SH 52.6 (+1.8) 
0 32.6 (+1.1) NH 7.4 (+1.4) 02 10.1 (+0.0) 
F 79.4 (-1.0) NH2 17.2 (+0.6) NO -1.3 (+1.8) 
Si 32.3 (- 0.4) OH 42.1 (+0.1) CN 91.6 (-2.6) 
P 13.9 (+3.3) SiH 27.8 (+1.6) PO 24.1 (+1.0) 
S 45.7 (+ 2.2) SiH2 23.1 (+ 2.8) s2 36.6 (+1.7) 
CI 83.0 (+ 0.4) SiH3 33.4 (- 0.9) Cl2 52.9 (+ 2.2) 
CH 27.2 (+1.4) PH 21.6 (+ 2.2) 
CH2 16.1 (-1.1) PH2 28.1 (+1.2) 

NH3 205.6 (-3.1) SiH* 153.4 (+0.6) HCI 133.8 (-0.2) 
HZO 161.0 (+ 4.1) PH3 186.3 (+ 0.8) 
C2H2 153.9 (-1.6) H2S 168.4 (+ 0.4) 

3 Va lues in kcal mol"1. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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Table (5.5) MR-G3(MP2) heats of formation, ionization energies, electron affinities 

and proton affinities. Values in parentheses are the differences between experimental 

and MR-G3(MP2) values/ 

Heats of 
formation 

Ionization 
energies 

Electron 
affinities 

Proton 
affinities 

Species Species Species 
LiH 30.5 (+ 2.8) PH3 3.7 (- 2.4) Fz -1.5 (+ 1.5) 
BeH 83.3 (-1.6) HzS -4.9 (+ 0.0) COZ - 94.8 (+ 0.7) 
CH 141.2 (+ 1.3) HCI -23.1 (+1.0) Naz 29.5 (+ 4.5) 
CH2 3S, 93.9 (- 0.2) Liz 47.5 (+4.1) Si2 138.7 (+1.2) 
CHZ 'A, 101.3 (+ 1.5) LiF - 80.3 (+ 0.2) P2 35.7 (-1.4) 
CH3 34.3 (+ 0.7) C2H2 54.7 (- 0.5) s2 31.5 (-0.8) 
CH4 -19.3 (+1.4) C2H4 15.8 (-3.3) Cl2 0.0 (+ 0.0) 
NH 85.0 (+ 0.2) CN 107.3 (-2.4) NaCl - 46.6 (+ 3.0) 
NH2 44.8 (+ 0.3) HCN 32.4 (- 0.9) SiO - 23.7 (- 0.9) 
NH3 -8.4 (-2.6) CO - 27.2 (+ 0.8) CS 64.9 (+ 2.0) 
OH 8.2 (+1.2) HCO 10.2 (-0.2) SO 2.2 (-1.0) 
H20 - 57.5 (- 0.3) HCHO - 25.3 (- 0.7) CIO 25.6 (-1.4) 
HF - 65.6 (+ 0.5) CH3OH - 47.3 (- 0.7) CIF -12.5 (-0.7) 
SiH2 \A, 63.0 (+ 2.2) N2 0.7 (- 0.7) CH3CI - 20.5 (+ 0.9) 
SiH2 

3e, 86.0 (+ 0.2) N2H4 25.2 (- 2.4) CHASH -6.7 (+1.2) 
SiH3 47.5 (+ 0.4) NO 21.3 (+0.3) HOCI - 17.8 (+ 0.0) 
SiH« 7.4 (+ 0.8) o2 0.2 (- 0.2) so2 - 66.0 (- 5.0) 
PH2 33.2 (-0.1) HzOz -32.6 (+ 0.1) 

Li 124.2 (+ 0.1) CI 296.7 (+ 2.4) HCI 293.7 (+ 0.3) 
Be 219.6 (-4.7) CH, 293.2 (- 2.2) C2H2 264.3 (-1.4) 
B 189.9 (+ 1.5) NH3 232.7 (+ 2.1) C2H4 241.0 (+ 1.3) 
C 258.5 (+ 1.2) OH 299.6 (+ 0.4) CO 324.5 (-1.4) 
N 334.5 (+ 0.8) HzO 291.0 (+ 0.0) N2 

;V; 359.1 (+ 0.2) 
0 312.9 (+ 0.9) HF 370.6 (- 0.7) Nz ;n„ 384.2 (+ 0.9) 
F 401.7 (+ 0.0) SiH, 254.1 (- 0.4) Oz 280.9 (- 2.6) 
Na 115.1 (+ 3.4) PH 234.8 (- 0.7) P z  243.7 (- 0.9) 
Mg 178.9 (-2.6) PHz 226.7 (- 0.3) s2 215.1 (+0.7) 
AI 138.5 (-0.5) PH3 228.9 (-1.3) Clz 265.9 (- 0.7) 
Si 187.9 (+ 0.0) SH 238.6 (+ 0.5) CIF 292.0 (-0.1) 
P 241.8 (+ 0.1) HzS zBi 241.2 (+0.2) CS 263.2 (-1.9) 
S 235.9 (+ 3.0) HzS 2 Ax 294.6 (+ 0.1) 

c 31.2 (-2.1) CH3 -2.5 (+4.3) SH 54.2 (+ 0.2) 
0 31.8 (+ 1.9) NH 6.6 (+ 2.2) o2 10.4 (-0.3) 
F 78.6 (- 0.2) NHZ 16.7 (+1.1) NO - 0.3 (+ 0.8) 
Si 33.2 (-1.3) OH 41.4 (+0.8) CN 91.6 (-2.6) 
P 15.9 (+1.3) SiH 29.7 (- 0.3) PO 26.2 (-1.1) 
S 47.5 (+ 0.4) SiHz 25.2 (+ 0.7) s2 38.7 (-0.4) 
CI 83.7 (- 0.3) SiH3 34.3 (-1.8) Cl2 57.4 (-2.3) 
CH 27.7 (+ 0.9) PH 23.3 (+0.5) 
CH2 15.1 (-0.1) PH2 29.8 (- 0.5) 

NH3 206.0 (-3.5) SiH, 153.3 (+0.7) HCI 132.7 (+0.9) 
HzO 161.1 (+4.0) PH3 184.9 (+2.2) 
C2H2 153.1 (-0.8) HZS 167.0 (+1.8) 

3 Va lues in kcal mol'. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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Table (5.6) Comparison of the mean absolute deviations (kcal mol"1) from 

experimental data for multi- and single-reference G2- and G3-type methods/ 

Test set AH, IE EA PA Total 

Number of comparisons 53 38 25 7 123 
G2(MP2,SVP) 1.36 1.87 2.05 0.81 1.63 

MR-G2(MP2,SVP) 1.38 1.38 1.40 1.76 1.41 

MR(QD)-G2(MP2,SVP) 1.55 1.42 1.32 1.93 1.48 

G2(MP2) 1.33 1.88 1.98 0.64 1.59 

MR-G2(MP2) 1.56 1.49 1.55 1.54 1.54 

MR(QD)-G2(MP2) 1.76 1.47 1.56 1.43 1.61 

G3(MP2) 1.13 1.29 1.23 0.93 1.19 

MR-G3(MP2) 1.23 1.13 1.12 1.98 1.22 

MR(QD)-G3(MP2) 1.35 1.13 1.13 2.07 1.28 

G2/QCIb 1.19 1.11 1.22 1.17 1.17 

MR-G2/ MRCI+Q 1.95 1.35 2.33 1.87 1.84 

MR-G3 / MRCI+Q 1.67 1.20 1.84 2.07 1.58 

G2/MP2 5.61 3.45 2.94 1.81 4.19 

MR-G2/MP2 1.69 2.29 2.32 1.70 2.01 

MR(QD)-G2/MP2 2.26 2.25 2.53 2.00 2.29 

G3/MP2 4.24 2.80 2.74 1.97 3.36 

MR-G3/MP2 1.60 1.63 1.77 1.85 1.66 

MR(QD)-G3/MP2 2.00 1.77 1.84 2.07 1.90 

J Unless otherwise noted, all data refer to the 123 energy test set. In the case of 

the standard Gn methods, this involved re-optimization of the HLC 

parameters for the reduced set, leading to results that differ slightly from 

published values based on the full G2-1 test set.3-4 

b Data obtained from Ref. 3b and refer to the full 125 energy G2-1 test set. 
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Table (5.7) Comparison of mean absolute deviations (MAD, kcal mol1) from 

experimental data for multi- and single-reference G2- and G3-type methods.3 

Method MAD Method MAD 

G2(MP2,SVP) 1.60 MR-G2(MP2,SVP) 1.41 
G2(MP2) 1.59 MR-G2(MP2) 1.54 

G3(MP2) 1.19 MR-G3(MP2) 123 

G2/QCI 1.17 MR-G2/ MRCI+Q 1.84 

G3/QCI - MR-G3/MRCI+Q 1.58 

G2/MP2 4.19 MR-G2/MP2 2.01 

G3/MP2 3.36 MR-G3/MP2 1.66 

J All data refer to the 123 molecule test set. In the case of the standard Gn 

methods, this involved re-optimization of the HLC parameters for the reduced 

set, leading to results that differ slightly from published values based on the 

full G2-1 test set.3-4 

b Data obtained from Ref. 3b and refer to the full 125 energy G2-1 test set. 



www.manaraa.com

106 

Table (5.8) MR-G2/ MRCI+Qa heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR-G2 / MRCI+Q values.6 

Soecies Soecies Soecies 
Heats of LiH 31.3 (+ 2.0) PH3 -1.0 (+ 2.3) F2 2.0 (- 2.0) 
formation BeH 83.1 (-1.4) H2S - 6.4 (+ 1.5) COZ -94.2 (+0.1) 

CH 141.0 (+1.5) HCI -23.1 (+1.0) Na2 30.5 (+ 3.5) 
CH2 j8, 94.3 (-1.6) Liz 48.5 (+3.1) Si2 140.1 (-0.2) 
CH2 'A, 99.5 (+ 3.3) LiF - 82.5 (+ 2.4) P2 34.0 (+ 0.3) 
CH3 33.8 (+1.2) CzHz 55.8 (-1.6) Sz 36.3 (-5.6) 
CH4 - 20.6 (+ 2.7) C2H4 11.6 (+ 0.9) CL2 4.2 (- 4.2) 
NH 85.2 (+ 0.0) CN 107.4 (- 2.5) NaCl - 46.4 (+ 2.8) 
NH2 43.7 (+ 1.4) HCN 31.7 (-0.2) SiO -21.8 (-2.8) 
NH3 -10.0 (-1.0) CO -27.8 (+1.4) CS 65.7 (+1.2) 
OH 8.6 (+ 0.8) HCO 10.3 (-0.3) SO 6.7 (- 5.5) 
H20 -57.9 (+ 0.1) HCHO - 26.9 (+ 0.9) CIO 28.6 (-4.4) 
HF -65.0( -0.1) CH3OH - 48.0 (+ 0.0) CIF -10.4 (+ 2.8) 
SiH2 'A, 60.7 (+ 4.5) N2 -0.2 (+0.2) CH3CI -19.9 (+0.3) 
SiHz Jt3i 85.2 (+1.0) N2H4 23.0 (- 0.2) CH3SH -6.2 (+ 0.7) 
SiH3 45.3 (+ 2.6) NO 21.2 (+0.4) HOCI -16.1 (-1.7) 
SiH4 3.8 (+ 4.4) O2 3.0 (- 3.0) SOz -60.3 (-10.7) 
PH2 30.5 (+ 2.6) H2O2 -31.4 (-1.1) 

Ionization Li 123.4 (+ 0.9) CI 296.6 (+ 2.5) HCI 293.1 (+ 0.9) 
energies Be 218.3 (-3.4) CH, 293.1 (-2.1) CzHz 261.4 (+1.5) 

B 189.9 (+ 1.5) NH3 232.5 (+ 2.3) C2H4 243.9 (-1.6) 
C 258.2 (+1.5) OH 299.4 (+ 0.6) CO 323.4 (- 0.3) 
N 333.5 (+ 1.8) H2O 290.6 (+ 0.4) Nz :i; 358.6 (+ 0.7) 
O 312.7 (+1.1) HF 369.5 (+ 0.4) Nz :n„ 383.2 (+ 1.9) 
F 401.2 (+0.5) SiH4 255.0 (-1.3) Oz 278.2 (+0.1) 
Na 114.1 (+4.4) PH 232.7 (+1.4) P2 242.3 (+ 0.5) 
Mg 177.5 (-1.5) PH2 224.4 (+ 2.0) Sz 211.8 (+ 4.0) 
AI 138.0 (+ 0.0) PH3 228.8 (-1.2) Clz 265.1 (+0.1) 
Si 187.0 (+ 0.9) SH 238.5 (+ 0.6) CIF 291.3 (+ 0.6) 
P 240.2 (+1.7) HzS ZB, 240.8 (+ 0.6) CS 263.0 (-1.7) 
S 236.1 (+ 2.8) HzS zAi 294.0 (+ 0.7) 

Electron c 27.0 (+2.1) CH3 -2.3 (+4.1) SH 52.6 (+1.8) 
affinities o 30.6 (+3.1) NH 5.9 (+ 2.9) Oz 8.1 (+ 2.0) 

F 75.8 (+ 2.6) NH2 15.8 (+2.0) NO -4.3 (+ 4.8) 
Si 30.5 (+ 1.4) OH 38.9 (+ 3.3) CN 91.0 (-2.0) 
P 15.6 (+1.6) SiH 27.1 (+ 2.3) PO 20.8 (+ 4.3) 
S 46.3 (+1.6) SiH2 23.0 (+ 2.9) S2 36.9 (+1.4) 
CI 82.7 (+ 0.7) SiH3 34.1 (-1.6) Clz 50.8 (+ 4.3) 
CH 25.5 (+3.1) PH 22.4 (+1.4) 
CH2 15.5 (-0.5) PH2 28.7 (+0.6) 

Proton NH3 205.7 (- 3.2) SiH, 152.7 (+1.3) HCI 133.4 (+0.2) 
affinities H2O 161.1 (+4.0) PH3 185.5 (+1.6) 

C2H2 154.2 (-1.9) HzS 167.9 (+0.9) 
^Corresponding to MRCI+Q/6-311+G(3d/,2p) + ZPVE + HLC. 
bValues in kcal mol"1. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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Table (5.9) MR-G3/MRCI+Qa heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR-G3/MRCI+Q values6 

Soecies Soecies Soecies 
Heats of LiH 31.9 (+1.4) PHa -0.1 (+1.4) Fz -2.7 (+ 2.7) 
formation BeH 81.7 (+ 0.0) HzS -6.6 (+1.7) COz -93.9 (-0.2) 

CH 140.6 (+1.9) HCI - 24.3 (+ 2.2) Naz 30.9 (+ 3.1) 
CHz JB1 93.5 (* 0.2) Liz 49.0 (+ 2.6) Si2 138.5 (* 1.4) 
CH2 'A, 100.5 (+ 2.3) LiF - 83.0 (+ 2.9) Pz 34.2 (+ 0.1) 
CH3 34.1 (+ 0.9) CzHz 56.1 (-1.9) Sz 33.6 (- 2.9) 
CH, -19.2 (+1.3) CzH4 12.8 (- 0.3) Clz 0.5 (- 0.5) 
NH 84.4 (+ 0.8) CN 107.8 (-2.9) NaCl - 48.4 (+ 4.8) 
NH2 44.1 (+ 1.0) HCN 32.8 (-1.3) SiO - 24.0 (- 0.6) 
NHa - 8.5 (- 2.5) CO - 27.2 (+ 0.8) CS 65.3 (* 1.6) 
OH 7.4 (* 2.0) HCO 10.4 (-0.4) SO 3.7 (- 2.5) 
H20 -57.9 (+ 0.1) HCHO - 26.0 (+ 0.0) CIO 25.8 (-1.6) 
HF -66.2 (+1.1) CHaOH -46.7 (-1.3) CIF -13.2 (+0.0) 
SiH2 'A, 60.7 (+ 4.5) N2 1.0 (-1.0) CHaCI -19.1 (-0.5) 
SiHzJB, 83.7 (+ 2.5) NzH, 25.6 (- 2.8) CHaSH - 5.5 (+ 0.0) 
SiHa 44.5 (* 3.4) NO 21.2 (+ 0.4) HOCI -17.9 (+ 0.1) 
SiH4 3.9 (* 4.3) Oz 0.4 (- 0.4) SOz - 62.7 (- 8.3) 
PHz 30.3 (+ 2.8) HzOz -32.4 (-0.1) 

Ionization Li 124.9 (-0.6) CI 297.1 (+ 2.0) HCI 294.0 (+ 0.0) 
energies Be 218.4 (-3.5) CH4 293.7 (- 2.7) CzHz 263.8 (- 0.9) 

B 191.4 (+ 0.0) NHa 232.6 (* 2.2) CzH4 244.6 (- 2.3) 
C 259.7 (+ 0.0) OH 299.5 (+ 0.5) CO 324.3 (-1.2) 
N 334.8 (* 0.5) HzO 290.8 (+ 0.2) Nz :i; 359.3 (+ 0.0) 
O 312.5 (+ 1.3) HF 369.4 (+ 0.5) Nz :n„ 383.9 (+ 1.2) 
F 400.4 (+ 1.3) SiH4 256.1 (- 2.4) Oz 280.2 (-1.9) 
Na 115.8 (+ 2.7) PH 235.2 (-1.1) Pz 243.4 (- 0.6) 
Mg 177.6 (-1.3) PHz 227.0 (- 0.6) Sz 214.5 (+1.3) 
AI 139.9 (-1.9) PHa 229.8 (- 2.2) Clz 266.6 (-1.4) 
Si 188.6 (-0.7) SH 239.9 (-0.8) CIF 292.3 (- 0.4) 
P 241.3 (* 0.6) HzS 2Si 242.1 (- 0.7) CS 263.7 (- 2.4) 
S 237.5 (+1.4) HZS 'AI 295.0 (- 0.3) 

Electron c 27.7 (+1.4) CHa -2.7 (+ 4.5) SH 54.0 (+ 0.4) 
affinities 0 28.5 (* 5.2) NH 5.1 (+ 3.7) Oz 7.8 (* 2.3) 

F 73.1 (+ 5.3) NHz 15.4 (+ 2.4) NO -2.7 (+ 3.2) 
Si 32.1 (- 0.2) OH 37.9 (+ 4.3) CN 91.5 (-2.5) 
P 17.2 (+ 0.0) SiH 29.6 (-0.2) PO 23.3 (+1.8) 
S 47.4 (+ 0.5) SiHz 25.7 (+ 0.2) Sz 38.7 (-0.4) 
CI 82.2 (+ 1.2) SiHa 35.2 (- 2.7) Clz 54.9 (+ 0.2) 
CH 26.7 (+1.9) PH 24.2 (-0.4) 
CH2 15.0 (+ 0.0) PHz 30.3 (-1.0) 

Proton NHa 206.3 (- 3.8) SiH4 152.5 (+1.5) HCI 132.9 (+0.7) 
affinities HzO 161.4 (+ 3.7) PHa 185.2 (+1.9) 

CzHz 153.7 (-1.4) HzS 167.2 (+1.6) 
^Corresponding to MRCI+Q/G3MP21arge + ZPVE + HLC. 
6Values in kcal mol"1. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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Table (5.10) G2/MP2J heats of formation, ionization energies, electron affinities and 

proton affinities. Values in parentheses are the differences between experimental and 

G2/MP2 values.15 

Soecies Soecies Soecies 
Heats of LiH 38.4 (-5.1) PHa 12.1 (-10.8) F2 - 3.4 (+ 3.4) 
formation BeH 79.1 (+ 2.6) HzS -0.8 (-4.1) C02 -120.3 (+26.2) 

CH 146.1 (-3.6) HCI -22.2 (+0.1) Na2 37.0 (- 3.0) 
CH2 

J8, 95.5 (-1.8) Liz 56.5 (-4.9) Si2 144.0 (-4.1) 
CH2 % 107.8 (- 5.0) LiF - 86.7 (+ 6.6) P2 34.0 (+ 0.3) 
CH3 38.4 (- 3.4) C2Hz 48.1 (+6.1) Sz 29.4 (+1.3) 
CH4 -13.9 (-4.0) CzH4 12.5 (+0.0) Cl2 -1.7 (+1.7) 
NH 89.8 (-4.6) CN 114.2 (-9.3) NaCl -46.8 (+ 3.2) 
NH2 49.3 (- 4.2) HCN 21.6 (+ 9.9) SiO -34.7 (+10.1) 
NHa - 7.8 (- 3.2) CO -40.2 (+13.8) CS 60.1 (+ 6.8) 
OH 9.6 (- 0.2) HCO 0.3 (+ 9.7) SO - 4.4 (+ 5.6) 
HzO - 60.4 (+ 2.6) HCHO - 34.8 (+ 8.8) CIO 27.9 (- 3.7) 
HF - 69.5 (+ 4.4) CHaOH -51.6 (+ 3.6) CIF -18.0 (+ 4.8) 
SiHz }A, 70.3 (- 5.1) Nz -9.9 (+ 9.9) CHaCI -21.2 (+ 1.6) 
SiHz J8, 89.2 (- 3.0) N2H4 25.8 (- 3.0) CHaSH - 2.9 (- 2.6) 
SiHa 53.7 (- 5.8) NO 14.3 (+ 7.3) HOCI -22.8 (+ 5.0) 
SiH4 16.2 (-8.0) o2 -9.1 (+9.1) SO2 -89.2 (+18.2) 
PHz 40.5 (- 7.4) HzOz -37.6 (+5.1) 

Ionization Li 123.2 (+1.1) CI 295.8 (+ 3.3) HCI 294.7 (- 0.7) 
Energies Be 205.8 (+ 9.1) CM 291.7 (-0.7) C2H2 266.8 (- 3.9) 

B 190.6 (+ 0.8) NHa 236.7 (-1.9) C2H4 244.0 (- 1.7) 
C 259.6 (+ 0.1) OH 300.3 (-0.3) CO 329.8 (- 6.7) 
N 336.7 (-1.4) H20 295.0 (- 4.0) N2 

:S; 355.2 (+4.1) 
0 309.8 (+ 4.0) HF 375.3 (- 5.4) N2 

:n„ 394.1 (- 9.0) 
F 401.7 (+ 0.0) SiH4 251.2 (+ 2.5) 02 270.3 (+ 8.0) 
Na 114.1 (+4.4) PH 233.2 (+ 0.9) P2 247.2 (- 4.4) 
Mg 169.6 (+ 6.7) PH2 225.1 (+ 1.3) s2 212.8 (+ 3.0) 
AI 134.3 (+ 3.7) PHa 224.5 (+3.1) Cl2 265.5 (- 0.3) 
Si 185.3 (+ 2.6) SH 236.6 (+ 2.5) CIF 293.8 (-1.9) 
P 241.4 (+ 0.5) H2S *8, 240.5 (+ 0.9) CS 279.9 (-18.6) 
S 232.0 (+ 6.9) H2S 293.7 (+ 1.0) 

Electron C 28.7 (+ 0.4) CHa 0.8 (+ 1.0) SH 54.4 (+ 0.0) 
Affinities 0 32.9 (+ 0.8) NH 6.9 (+ 1.9) o2 8.1 (+ 2.0) 

F 84.3 (- 5.9) NH2 20.9 (-3.1) NO - 3.4 (+ 3.9) 
Si 31.3 (+ 0.6) OH 47.4 (- 5.2) CN 108.9 (-19.9) 
P 11.7 (+ 5.5) SiH 26.8 (+ 2.6) PO 22.5 (+ 2.6) 
S 45.7 (+ 2.2) SiH2 23.1 (+ 2.8) s2 37.3 (+1.0) 
CI 85.5 (-2.1) SiHa 29.2 (+ 3.3) Cl2 55.3 (- 0.2) 
CH 28.3 (+ 0.3) PH 20.7 (+ 3.1) 
CHz 12.8 (+2.2) PH2 28.4 (+ 0.9) 

Proton NHa 201.4 (+1.1) SiH4 152.6 (+1.4) HCI 131.0 (+ 2.6) 
Affinities HzO 162.1 (+ 3.0) PHa 186.5 (+ 0.6) 

C2H2 151.1 (+1.2) H?S 166.1 (+ 2.7) 
'Corresponding to MP2/6-311 +G(3df,2p) + ZPVE + HLC 

"Values in kcal mol1. The heats of formation are 298 K values whereas the 
remaining quantities refer to 0 K. 
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TABLE (5.11) G3/MP23 heats of formation, ionization energies, electron affinities 

and proton affinities. Values in parentheses are the differences between experimental 

and G3/MP2 values." 

Soecies Soecies Soecies 
Heats of LiH 36.9 (- 3.6) PH3 9.3 (- 8.0) F2 4.9 (-4.9) 
Formation BeH 78.4 (+ 3.3) H2S - 0.3 (- 4.6) C02 -113.6 (+19.5) 

CH 144.2 (- 1.7) HCI -18.0 (-4.1) Na2 35.3 (-1.3) 
CHZ "BI 91.2 (+2.5) Li2 54.9 (- 3.3) Si2 141.4 (-1.5) 
CH2 'A, 106.9 (-4.1) LiF -82.1 (+2.0) P2 33.0 (+1.3) 
CH3 35.0 (+ 0.0) C2H2 47.3 (+ 6.9) Sz 30.7 (+ 0.0) 
CH, -16.4 (-1.5) C2H. 10.2 (+ 2.3) Cl2 7.2 (- 7.2) 
NH 85.6 (- 0.4) CN 113.5 (-8.7) NaCl -43.2 (-0.4) 
NHZ 46.2 (-1.1) HCN 21.4 (+ 10.1) SiO - 33.4 (+ 8.8) 
NH3 -10.1 (-0.9) CO - 36.2 (+ 9.8) CS 62.7 (+ 4.2) 
OH 9.5 (-0.1) HCO 1.9 (+8.1) SO -3.1 (+4.3) 
H20 - 59.5 (+ 1.7) HCHO - 32.6 (+ 6.6) CIO 33.6 (- 9.4) 
HF -65.2 (+0.1) CH3OH -51.1 (+3.1) CIF - 8.0 (- 5.2) 
SiH2 'A, 68.7 (- 3.5) N2 - 10.0 (+10.0) CH3CI -17.6 (-2.0) 
SiH2 

JBI 84.6 (+1.6) N2H. 22.8 (+0.0) CH3SH - 3.3 (- 2.2) 
SiH3 49.6 (-1.7) NO 15.8 (+5.8) HOCI -16.4 (-1.4) 
SiH, 12.7 (-4.5) o2 - 7.6 (+7.6) SOz -82.7 (+11.7) 
PH2 36.9 (- 3.8) H202 - 34.8 (+2.3) 

Ionization Li 123.5 (+ 0.8) CI 299.3 (- 0.2) HCI 294.4 (- 0.4) 
energies Be 208.9 (+ 6.0) CH, 291.1 (-0.1) C2H2 266.2 (- 3.3) 

B 190.6 (+ 0.8) NH3 235.6 (- 0.8) C2H. 243.4 (-1.1) 
C 259.7 (+ 0.0) OH 299.1 (+ 0.9) CO 329.5 (- 6.4) 
N 336.5 (-1.2) H2O 294.0 (- 3.0) N2 

:S; 354.7 (+ 4.6) 
0 312.8 (+1.0) HF 374.1 (- 4.2) N2 

:n. 393.4 (- 8.3) 
F 404.1 (- 2.4) SiH, 251.1 (+2.6) o2 272.6 (+ 5.7) 
Na 114.4 (+ 4.1) PH 236.0 (-1.9) Pz 247.1 (-4.3) 
Mg 172.8 (+ 3.5) PH2 227.9 (-1.5) s2 215.8 (+ 0.0) 
AI 134.8 (+3.2) PH3 224.3 (+ 3.3) Clz 265.8 (- 0.6) 
Si 185.5 (+2.4) SH 236.6 (+ 2.5) CIF 293.5 (-1.6) 
P 241.1 (+0.8) H2S ZBI 240.5 (+ 0.9) CS 279.6 (-18.3) 
S 236.4 (+ 2.5) H2S 2Ay 293.6 (+1.1) 

Electron c 28.1 (+1.0) CH3 - 0.9 (+ 2.7) SH 54.7 (- 0.3) 
affinities 0 34.1 (- 0.4) NH 5.0 (+ 3.8) Oz 6.6 (+ 3.5) 

F 84.7 (-6.3) NH2 19.2 (-1.4) NO -1.5 (+ 2.0) 
Si 31.5 (+ 0.4) OH 45.1 (- 2.9) CN 108.0 (-19.0) 
P 16.2 (+ 1.0) SiH 30.2 (- 0.8) PO 25.2 (-0.1) 
S 49.9 (- 2.0) SiH2 26.0 (-0.1) Sz 37.8 (+ 0.5) 
CI 88.4 (- 5.0) SiH3 29.1 (+ 3.4) Cl2 58.6 (- 3.5) 
CH 30.0 (-1.4) PH 21.2 (+ 2.6) 
CH2 11.1 (+3.9) PH2 28.8 (+ 0.5) 

Proton NH3 201.9 (+ 0.6) SiH, 152.4 (+1.6) HCI 130.6 (+3.0) 
affinities H2O 162.4 (+ 2.7) PH3 186.2 (+ 0.9) 

C2H2 150.6 (+1.7) H,S 165.5 (+ 3.3) 
'Corresponding to MP2/G3MP21arge + AE(SO) + ZPVE + HLC. 

"Values in kcal mol—1. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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TABLE (5.12) MR-G2/MP2a heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR-G2/MP2 values." 

Soecies Soecies Soecies 
Heats of LiH 30.0 (+ 3.3) PH3 4.9 (— 3.6 F2 — 1.4 (+1.4 
formation BeH 85.6 (—3.9 H2S — 3.7 (— 1. C02 — 101.6 (+7.5 

CH 142.2 (+ 0.3) HCI — 22.7 (+ 0.6 Na2 29.0 (+ 5.0) 
CH2 

jBI 94.3 (—0.6 Li2 47.1 (+4.5) Si2 139.1 (+0.8) 
CH2 % 102.4 (+ 0.4) LiF — 82.5 (+ 2.4 P z  35.3 (—1.0 
CH3 35.2 (—0.2 C2H2 52.4 (+1.8) s2 28.9 (+1.8) 
CH4 —18.3(+ 0.4 C2H4 11.0 (+1.5) Cl2 0.5 (—0.5 
NH 86.1 (—0.9 CN 104.9 (+ 0.0) NaCl — 48.5 (+ 4.9 
NH2 45.6 (—0.5 HCN 30.8 (+ 0.7) SiO — 19.9 (—4. 
NH3 — 7.2 (—3. CO 

o
>
 o
 

C
O

 &
 I CS 64.7 (+ 2.2) 

OH 8.3 (-1.1) HCO 9.6 (+ 0.4) SO — 1.4 (+ 2.6 
H2O — 57.1 (—0. HCHO — 26.1 (* 0.1 CIO 23.9 (+ 0.3) 
HF -66.7 (+1.6) 

I
 

S
 

o
 — 47.2 (— 0. CIF — 13.3 (+ 0.1 

SiH2 'A, 63.5 (+1.7) N2 0.4 (—0.4 CH3CI — 21.5 (+1.9 
SiH2 

JB, 86.2 (+ 0.0) N2H4 25.4 (—2.6 CH3SH — 4.2 (— 1. 
SiH3 48.1 (—0.2 NO 19.5 (+ 2.1) HOCI — 17.9 (+ 0.1 
SiH, 8.0 (+ 0.2) o2 — 4.5 (+4.5 so2 — 74.1 (+ 3.1 
PH2 34.4 (—1.3 H2O2 — 33.6 (* 1.1 

Ionization Li 123.4 (• 0.9) CI 295.6 (+ 3.5) HCI 292.9 (+1.1) 
energies Be 219.5 (—4.6 ChU 291.4 (—0.4 C2H2 261.7 (+1.2) 

B 186.5 (+ 4.9) NH3 230.6 (+ 4.2) C2H4 244.0 (—1.7 
C 256.1 (+ 3.6) OH 299.4 (+ 0.6) CO 319.7 (+3.4) 
N 334.0 (+1.3) H2O 290.1 (+ 0.9) N2 

:X; 355.6 (+ 3.7) 
O 312.0 (+1.8) HF 372.2 (— 2.3 N2 

:n. 383.7 (+1.4) 
F 402.7 (—1.0 SiH4 252.1 (+ 1.6) o2 283.1 (—4.8 
Na 114.1 (+4.4) PH 232.5 (+1.6) P z  243.2 (—0.4 
Mg 178.7 (—2.4 PH2 224.0 (+ 2.4) s2 215.2 (+0.6) 
AI 134.1 (+ 3.9) PH3 225.9 (+1.7) Cl2 263.3 (+1.9) 
Si 185.2 (+ 2.7) SH 236.5 (+ 2.6) CIF 290.0 (+1.9) 
P 241.4 (+ 0.5) HzS 2Bi 238.9 (+ 2.5) CS 259.7 (+1.6) 
S 233.6 (* 5.3) H2S 'A, 293.1 (+1.6) 

Electron c 31.4 (—2.3 CH3 — 4.6 (+6.4 SH 52.7 (+1.7) 
affinities o 34.3 (—0.6 NH 6.9 (+ 1.9) 02 10.6 (—0.5 

F 83.5 (— 5.1 NHz 16.0 (+1.8) NO 3.0 (—2.5 
Si 31.7 (+ 0.2) OH 43.9 (—1.7 CN 88.6 (+ 0.4) 
P 13.4 (* 3.8) SiH 26.8 (+ 2.6) PO 28.8 (—3.7 
S 45.7 (+ 2.2) SiHz 22.0 (+ 3.9) Sz 35.6 (+ 2.7) 
CI 84.2 (—0.8 SiH3 30.8 (+1.7) Cl2 58.2 (—3.1 
CH 27.0 (+1.6) PH 20.7 (+3.1) 
CH2 13.4 (+1.6) PHz 27.0 (+ 2.3) 

Proton NH3 207.6 (— 5.1 SiH, 154.6 (—0.6 HCI 133.1 (+ 0.5) 
affinities H2O 161.2 (+ 3.9) PH3 186.9 (+ 0.2) 

C2H2 153.6 (—1.3 H2S 168.5 (+ 0.3) 
'Corresponding to CASPT2/6-311+G(3d/,2p) + ZPVE + HLC. 

"Values in kcal mol"1. The heats of formation are 298 K values whereas the remaining 

quantities refer to 0 K. 
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Table (5.13) MR-G3/MP2d heats of formation, ionization energies, electron affinities 

and proton affinities. Values in parentheses are the differences between experimental 

and MR-G3(MP2)/MP2 values." 

Soecies Soecies Soecies 
Heats ofLiH 29.7 (+ 3.6) PH3 4.4 (- 3.1) F2 -0.4 (+0.4) 
formation BeH 85.9 (- 4.2) H2S -3.4 (-1.5) COZ - 98.5 (+ 4.4) 

CH 142.4 (+ 0.1) HCI -21.5 (-0.6) Na2 28.6 (+ 5.4) 
CH2 

JBI 94.5 (- 0.8) Li2 46.7 (• 4.9) Si2 139.8 (+0.1) 
CH2 'AT 102.4 (+ 0.4) LiF -81.1 (+1.0) Pz 35.2 (- 0.9) 
CH3 35.1 (-0.1) C2H2 52.1 (+2.1) S2 30.7 (+ 0.0) 
CH, -18.7 (+ 0.8) C2H4 10.6 (+1.9) Clz 2.4 (- 2.4) 
NH 86.3 (-1.1) CN 106.0 (-1.1) NaCl - 47.9 (+ 4.3) 
NH2 45.7 (- 0.6) HCN 31.1 (+0.4) SiO -20.6 (-4.0) 
NH3 - 7.5 (- 3.5) CO -25.3 (-1.1) CS 65.7 (+1.2) 
OH 8.9 (+ 0.5) HCO 11.5 (-1.5) SO 0.1 (+1.1) 
H2O -56.8 (-1.0) HCHO -24.8 (-1.2) CIO 26.2 (- 2.0) 
HF - 65.6 (+ 0.5) CH3OH -46.5 (-1.5) CIF -10.4 (-2.8) 
SiH2 \4, 63.1 (+ 2.1) N2 0.9 (-0.9) CHACI -20.0 (+ 0.4) 
SiH2 

JB, 86.1 (>0.1) N2H. 25.3 (-2.5) CH3SH -3.9 (-1.6) 
SiH3 47.5 (+ 0.4) NO 21.3 (+0.3) HOCI -16.1 (-1.7) 
SiH, 6.9 (+1.3) o2 -2.6 (+ 2.6) so2 -72.4 (+1.4) 
PH2 34.2 (-1.1) H202 - 33.0 (+ 0.5) 

Ionization Li 124.3 (+ 0.0) CI 297.3 (+1.8) HCI 294.6 (- 0.6) 
energies Be 221.0 (-6.1) CH, 292.9 (-1.9) C2H2 265.0 (-2.1) 

B 187.4 (• 4.0) NH3 231.5 (+ 3.3) C2H. 245.4 (-3.1) 
C 256.8 (• 2.9) OH 300.2 (-0.2) CO 321.4 (+1.7) 
N 334.4 (• 0.9) H20 291.1 (-0.1) N2 

:I; 357.0 (* 2.3) 
0 313.1 (+ 0.7) HF 373.0 (- 3.1) N2 

:n„ 385.1 (+ 0.0) 
F 403.3 (-1.6) SiH, 253.9 (-0.2) 02 283.8 (- 5.5) 
Na 115.2 (• 3.3) PH 233.9 (+ 0.2) P2 244.9 (-2.1) 
Mg 180.2 (-3.9) PH2 225.5 (+ 0.9) S2 216.7 (-0.9) 
AI 135.5 (+ 2.5) PH3 227.6 (+ 0.0) Clz 265.5 (-0.3) 
Si 186.3 (+ 1.6) SH 238.6 (+ 0.5) CIF 291.7 (* 0.2) 
P 242.0 (-0.1) H2S ZB, 240.9 (• 0.5) CS 261.1 (+0.2) 
S 236.3 (+ 2.6) H2S *AY 294.9 (-0.2) 

Electron c 31.1 (-2.0) CH3 -4.1 (+5.9) SH 54.9 (- 0.5) 
affinities 0 33.7 (• 0.0) NH 6.8 (+ 2.0) 02 11.1 (-1.0) 

F 82.4 (- 4.0) NH2 16.3 (+1.5) NO 3.2 (- 2.7) 
Si 32.8 (-0.9) OH 43.7 (-1.5) CN 89.7 (- 0.7) 
P 16.3 (+ 0.9) SiH 28.4 (+1.0) PO 30.1 (- 5.0) 
S 48.2 (- 0.3) SiH2 23.6 (* 2.3) S2 38.1 (+ 0.2) 
CI 85.2 (-1.8) SiH3 32.7 (-0.2) Cl2 61.3 (-6.2) 
CH 27.0 (+1.6) PH 23.1 (+0.7) 
CH2 13.7 (+1.3) PH2 29.3 (+0.0) 

Proton NH3 208.1 (-5.6) SiH, 154.3 (-0.3) HCI 132.6 (+1.0) 
affinities H2O 161.5 (+ 3.6) PH3 186.5 (+0.6) 

C2H2 153.1 (-0.8) H2S 167.8 (+1.0) 
'Corresponding to CASPT2/G3MP21arge + AE(SO) + ZPVE + HLC. 

"Values in kcal mol"1. The heats of formation are 298 K values whereas the remaining 

quantities refer to 0 K. 
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Table (5.14) MR-G/i and Gn timings/ 

Method nh3 C2H2 HCHO 

MR-G3/MP2 11.9 235.4 382.3 
MRG2/MP2 12.0 235.8 385.1 

MR-G3(MP2) 683 3047.0 4160.4 

MR-G2(MP2,SVP) 68.6 3047.4 4163.2 

MR-G2(MP2) 84.4 3197.8 4958.3 

MR-G3/MRCI+Q 90.9 3440.0 4500.9 

MR-G2/MRCI+Q 93.5 3487.7 4606.4 

G3/MP2 3.9 4.0 4.1 

G2/MP2 3.9 4.0 4.3 

G3(MP2) 27.6 29.6 32.8 

G2(MP2,SVP) 27.6 29.6 33.0 

G2(MP2) 40.0 32.9 41.0 

G3/QCI 34.1 51.0 70.6 

G2/QCI 37.6 49.6 87.7 

J[n seconds using MOLPRO 98 on a single processor of a VPP300 with 1700 Mb 

memory. The active-space sizes for NH3, C2H2 and HCHO are (8,7), (10,10) and 

(12,10) for NH3, C2H2 and HCHO, respectively. The Gn timings refer to Gn(CCSD) 

calculations, i.e. in which CCSD(T) is used in place of QCISD(T). 
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Table (5.15) Comparison of the ten largest deviations between experiment and the 

values calculated by MR-G3(MP2) and G3(MP2).a 

Quantity MR-G3(MP2)° Quantity G3(MP2)C 

AH°t(Sa) - 5.0 (- 3.9) IE(Be) - 5.4 (- 4.7) 

IE(Be) - 4.7 (- 5.4) EA(NH) + 4.5 (+ 2.2) 

AH0 ((Na-J + 4.5 (+ 3.3) iE(cy - 4.0 (- 2.6) 

EA(CH3) + 4.3 (+1.7) AH°,(S02) - 3.9 (- 5.0) 

PA(H20) + 4.0 (+ 1.8) IE(S) + 3.6 (+ 3.0) 

PA(NH3) - 3.5 (- 0.4) EA(C) + 3.6 (- 2.1) 

IE(Na) + 3.4 (+ 3.2) EA(0) + 3.3 (+ 1.9) 

AH°f(C2H4) - 3.3 (+ 0.7) AH°f(Na2) + 3.3 (+ 4.5) 

AH°f(NaCl) + 3.0 (+ 1.5) AH°f(CS) + 3.2 (+ 2.0) 

IE(S) + 3.0 (+ 3.6) IE(Na) + 3.2 (+ 3.4) 

Jln kcal mol"1. "Values in parentheses are the corresponding G3(MP2) deviations 

from ref 4b. Taken from ref. 4b; values in parentheses are the corresponding MR-

G3(MP2) deviations from the present work. 
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CHAPTER 6: ON THE ELECTRONIC STRUCTURE OF BIS( rf-
CYCLOPENTADIENYL) TITANIUM 

A paper to be submitted to the Journal of the American Chemical Society 

Mark A. Freitag and Mark S. Gordon 

Abstract 

Prior to the first reported synthesis of the titanium analog of ferrocene, 

bis( if -cyclopentadienyl)Ti, there was theoretical speculation as to the electronic 

structure of what would become known as "titanocene." In time, the original report 

of a successful synthesis was apparently shown to be incorrect, and a dimeric form 

of the substance was postulated as the correct structure. In the present work, high 

level ab initio and DFT calculations are performed on the titanocene monomer to 

help answer these structural questions, and to compare with early theoretical and 

experimental efforts. The need for a muIti-configurationa 1 wavefunction is analyzed 

and found to be unnecessary. The present calculations predict that the ground state 

of titanocene monomer is a linear triplet with freely rotating cyclopentadienyl rings, 

which further suggests that experimentally synthesized "titanocene" is indeed some 

form of the dimer. 

I. Introduction 

A. Historical Background 

The historical account given here is presented from a distinctly theoretical 

point of view. For an experimental perspective, see the recent review by Beckhaus.86 

Even before Fischer and Wilkinson reported the first synthesis of what they 

called d/(ït-cyclopentadienyl)titanium(II) in 1956,87 there was theoretical speculation 

as to the electronic structure of what would come to be known as "titanocene." 

From 1953 to 1954, Dunitz and Orgel,88,89 Jaffé,*5 and Moffitt/1 in the light of 

molecular orbital theory and motivated by the recent discovery of ferrocene,''2 

considered the electronic structure of all bis-cyclopentadienyl compounds in general. 
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Moffitt assumed a structure for the "beautifully symmetric" ferrocene, and broke 

the molecule into the iron atom and cyclopentadienyl (Cp) ring fragments to 

evaluate the bonding. For the rings, he used a simple p-orbital basis on each carbon 

atom to derive a linear combination of 10 MOs: als +a2u +elg +e2g +elu +e2u. Moffitt 

then chose to describe the iron atom using its 4s (alg), 3d (alg, elg, e2x), and 4p (elu/ a2u) 

orbitals. From there, qualitative arguments were used to estimate the orbital 

energies, and the resulting orbital interaction diagram was derived: in order of 

increasing energy, the frontier orbitals for titanocene were (elg)4 (a2u)2 (flIjf)2 [<z,/4s)]2 

(eluy (e:?)°, where the elu and e2? orbitals are nearly degenerate. In his model, the 

stability of ferrocene was accounted for by significant overlap of the elx orbitals of 

the Cp rings and the corresponding dx. and dv. orbitals of the iron atom. By 

extrapolation, Moffitt suggested that titanocene, with its four valence electrons, 

should be a diamagnetic singlet, with the two non-bonding titanium electrons 

assigned to the alx(4s) orbital. However, Moffitt also suggested that if the Hund 

stabilization was significant, the paramagnetic triplet, with one electron in the 

metal's e2x orbital, would be more stable. Titanocene had yet to be synthesized 

experimentally at the time of Moffitt's paper, so these predictions could not be 

tested. 

A year later, Dunitz and Orgel84 modified Moffitt's qualitative approximation 

into a "semiquantitative" model, approximating overlap integrals between the metal 

atom and Cp ring orbitals. These calculations changed ferrocene's MO frontier 

orbital energies (for titanocene occupation) from Moffitt's order to (alg)2 (a2u)2 (e,x)4 

(e2g)2 [rtIv/4s)]° (elu)4 in order of increasing energy, the last three orbitals being 

"uncertain," and approximately degenerate. This in turn changed the prediction for 

titanocene from a singlet to a triplet, since the two non-bonding metal electrons were 

assigned to the degenerate e2x orbital. 

Also in 1955, Fisher and Wilkinson87 reported the first synthesis of titanocene. 

They were aware of the predictions of Moffitt, Dunitz and Orgel, and since they 

found their substance to be diamagnetic, they used Moffitt's scheme to support their 

observation that there were two forms of the compound: a green paramagnetic 

(triplet) form that converted spontaneously to a brown diamagnetic (singlet) form. 

Based on magnetic susceptibility experiments, they proposed that for unsolvated 
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titanocene, the excited triplet state must be at a level at least kT (-0.75 kcal) above 

the singlet ground state. 

In 1957, another theoretical paper appeared on metal aromatic structures by 

Liehr and Ballhausen.93 They followed Moffitt's basic treatment, and improved on 

Dunitz and Orge Is calculations by using one-electron Hamiltonians and the 

variational principle, applied to each of the important molecular orbitals. They 

further estimated orbital energies using crystal field theory, allowing positive point 

charges on the Cp rings to interact with electrons in the metal's elg orbital to simulate 

bonding interactions. Anti-bonding interactions were modeled with negative point 

charges on the Cp ring interacting with the same metal <?lg electrons, and non-

bonding interactions were between negative point charges on the ring and electrons 

in the metal's alg(4s), alR, and e2R orbitals. Using this method, they found the order of 

increasing energy in MOs to be (alx)2 (a2uf (elu)* (etgf [at/4s)]2. This also suggested a 

singlet ground state for titanocene, but the authors used an adjustable parameter 

and the experimental results of Fischer and Wilkinson to generate this result after 

the fact. 

Two years later, Matsen* used a "strong-field, ligand-field model" to predict a 

singlet ground state for titanocene, again in support of the known experimental 

evidence at the time. 

In 1960, Robertson and McConnell,y5 in a magnetic resonance study, noted 

that based on Fischer and Wilkinson's work, titanocene should be diamagnetic, but 

they argued that this does not fit their ionic model well. The model represents the 

Cp ligands using circular line charges, which create a field potential. This potential 

splits the 3d orbitals, and an energy difference could be calculated. Based on 

experimental magnetic susceptibility data, the authors assumed that of the metal's d 

orbitals, nlR and <?2g should be nearly degenerate, and lie much lower in energy than 

the etR. The authors noted that titanocene, with two electrons in these orbitals, does 

not fit this assumption, since it would then most likely be paramagnetic by Hund's 

rule. They suggested that the observed magnetic properties may be a result of 

interaction with neighboring molecules in the crystal, which may "quench" the spin. 

They also suggested lowering the energy of one of the three i-orbitals, but 
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ultimately did not adopt this since the other metallocenes studied fit their model 

quite well. They considered titanocene an exception to their general conclusions. 

An excellent review of the above theoretical approaches as they apply 

specifically to ferrocene is given by Scott and Becker.1* They also include the 

Yamazaki97 reference, which is the first theoretical treatment to use SCF theory, 

although that paper makes no specific reference to titanocene. 

tn 1964, Watt and Baye* reported properties of FeCpz, NiCp2/ and CrCp2, and 

questioned Fischer and Wilkinson's synthesis of TiCp2: "[W]e have been unable to 

produce (C5H5)2Ti by their procedure, by any modification thereof, or by other 

methods that might reasonably be expected to provide this compound." In a later 

paper,1" these same authors along with Drummond noted two other reported 

syntheses of titanocene, but suggest that the characterizations of each were quite 

weak. They used IR data to support their claim that they had indeed produced 

titanocene, and reported that the substance is more stable thermally than had been 

reported by Fischer and Wilkinson. When their diamagnetic singlet green form is 

heated to 200", it turns black and appears to decompose, but then dissolves in 

benzene to form a green solution of titanocene which can be recrystallized. Their 

magnetic susceptibility experiments showed that all samples of titanocene were 

diamagnetic. They found the molecular weight (cryoscopically in benzene) to be 

346, compared to 178.07 for (C^H^Ti. (178.07 x 2 = 356.14) 

Calderazzo, Salzmann, and Mosimann,100 based on the above results, 

suggested a dimeric formula for titanocene, although they were not specific 

regarding the details of such a structure. In a later paper, Salzmann and 

Mosimann101 suggested that the IR spectra of Watt, Baye and Drummond's 

compound is too complex to be consistent with a simple ferrocene-like sandwich 

structure. They note the spectrum has characteristics of both sigma- and pi- ring-to-

metal bonding, but were unsure as to the stability of this structure in solution. 

In 1969, Brintzinger and Bartell102 proposed that both Watt, Baye, and 

Drummond*, and Salzmann and Mosimann'00 indeed had a compound Cl0HI0Ti, but 

it in fact exists as a dimer and does not have the traditional sandwich structure of 

metallocenes. They used IR and NMR data to confirm Salzmann and Mosimann's 

suggestion that the Cp rings are a bound as well as ic bound to the titanium atom. 
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Brintzinger and Bartell also reported extended Hiickel calculations on the 

"hypothetical" molecule (Tr-CjHj^Ti. They used previous calculations on 

vanadocene103104 to suggest that the metal's non-bonding, unoccupied alg orbital (d_,) 

lies just above the filled ligand elg and elu orbitals. This would allow for a second 

order Jahn-Teller geometrical distortion of E,s or £Zu symmetry. The £,„ distortion 

would correspond to bending of the Cp rings away from axial symmetry. (They use 

D5d notation, although they consider the molecule to be D5h.) Their Hiickel 

calculations suggest that a Cp-Ti-Cp angle of 140-150° should be most stable. They 

also considered the £,x distortion that would convert the K sandwich molecule to a 

<T complex, but the authors performed no calculations on this distortion. It was also 

proposed that (;r-C5H;)2Ti is unstable, and most likely decomposes by means of a 

hydride shift from one of the ring hydrogens to the Ti atom. 

Brintzinger and Bercaw105 subsequently elaborated on their earlier 

communication. They reported that "titanocene" is "...a titanium hydride complex 

and contains two of its four ring ligands in the form of C5H4 units." They explained 

much of titanocene's chemistry by analogy to a carbene. In another follow-up 

communication, Marvich and Brintzinger106 again claim to have isolated (C5H5)2Ti, 

but only as the dimer. This appears to be the end of experimental speculation on 

"titanocene" in the literature.107 

In 1975, Lauher and Hoffmann106 published a theoretical study of 

bis(cyclopentadienyl)-MLn complexes. They constructed molecular orbitals for a 

bent bis(/73-cyclopentadienyl)Ti (TiCpz) fragment, which serves as a starting point 

for a general overview of more complex organometallics. These authors considered 

the general MCp2 fragment to be two parallel C5H5 ligands in D5d symmetry. In 

trying to understand how additional ligands attach to a MCp2 fragment, the authors 

examined the frontier orbitals of a TiCp, fragment using extended Hiickel 

calculations. To make maximum use of symmetry, they bend from the D;h geometry 

into a C2v structure. They found that the orbitals descended from the eIg orbitals are 

stabilized with bending, and those from alg and e1% are destabilized. They concluded 

that the "typical" Cp-Ti-Cp angle is 136°, and noted the similarity between their 

results and that of Brintzinger and Bercaw. 
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Finally, in 1978 Clack and Warren109 used INDO SCF calculations to come to 

the same conclusions as Hoffmann about the relative frontier orbital energies. 

B. The Present Approach 

It is clear that there has been much interest and speculation regarding the 

nature of the electronic structure of "titanocene." (Here we will take "titanocene" to 

mean a single bis( f^-cyclopentadienyl)Ti fragment, abbreviated as TiCp2.) There 

seems to be general agreement that attempts to prepare titanocene in the laboratory 

result in some form of the dimer, with or without hydride bridges, as discussed 

above. Still, the TiCp, fragment, while possibly not stable as the monomer, is still an 

important component of many useful catalysts, and a knowledge of its electronic 

structure will aid in the understanding of the chemistry of these species. Of course, 

it is also important to obtain an understanding of the molecular and electronic 

structure of TiCp, itself. We anticipate that future work will focus on the electronic 

structure of possible dimers. 

Our approach will be to re-examine previous conclusions using high-level ab 

initio and density functional theory (DFT) theories to determine the structure and 

relative energies of the lowest energy singlet and triplet states of TiCp,. First, the 

use of multi-configurational wavefunctions will be analyzed, in order to assess the 

need for such a wavefunction. Once it is established that single reference methods 

should be reliable, DFT, second order perturbation theory (MP2) and coupled cluster 

[CCSD(T)] methods are employed to elucidate the low-energy form of TiCp,. 

II. Methods 

The all-electron 6-31G**110 and GAMESS PVTZ111 basis sets were used for all 

atoms, including titanium.112-113 Geometries and numerical Hessians were obtained 

at the Hartree-Fock, DFT and MP2 levels of theory. For the MCSCF wavefunction, a 

(2,2) active space is used, where the two orbitals are the HOMO and LUMO based 

on the MP2 natural orbitals. Larger active spaces sets were also tested with similar 

results. MCSCF, ROHF, RHF, DFT (B3LYP)114 and closed-shell MP2 calculations 
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were carried out using the GAMESS115 suite of programs, unrestricted MP2 (UMP2) 

calculations were performed using Gaussian 94,116 and Molpro was used for the 

CCSD(T)117 and UCCSD(T)118 calculations. The notation RHF/6-31G** refers to a 

geometry optimization at this level of theory, while RHF/PVTZ//RHF/6-31G** 

refers to a single-point RHF/PVTZ calculation at the RHF/6-31G** geometry. 

Numerical Hessians were evaluated throughout, using the double-difference 

method, and projected to eliminate rotational and translational contaminants.119 

For C2v and Cs geometries, the Cp-Ti-Cp angle is measured by defining the 

plane of each Cp ring in terms of three points: the nuclei of the symmetry unique 

carbon and the two carbons furthest away from it in the same Cp ring. The angle 

between the two vectors normal to these planes is defined as the Cp-Ti-Cp angle, 9. 

III. Results and Discussion 

A. Preliminary Considerations 

Let us first consider the symmetry characteristics of the molecule in more 

detail, [f the Cp rings are parallel to one another and staggered, TiCp, has D5D 

symmetry; if the rings are parallel but eclipsed, the symmetry is D^; decreasing the 

Cp-Ti-Cp angle 6 from 180° in DSH symmetry gives C2v, and similar bending from DY 

gives a Cs geometry. Fig. (6.1) shows the orientation of these four point groups 

relative to Cartesian coordinates. For the Cs geometry, the xy plane is the mirror 

plane. Note that upon reducing symmetry from (D^/D^) to (C2v/Cs), the molecule 

is rotated from (y, z, x) to (x, y, z) in order to maintain the z-axis as the principle axis. 

Consequently, orbital designations change also. For example, a d^ orbital in Q is a 

d^ in Dm. For ease of reference, Table (6.1) summarizes this information. 
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Orbital 
DM DSN C2V Q designations 

f°r DSD/ Dsn 
A1r A,* A, A Z" 
A2K A2' B, A" 
E.K E," A2+Bo  A'+A" xz .yz  
E2K E2' AT+B, A'+A" xr-y2, xy 
Alu A," A2 A" 

xr-y2, xy 

A2U AV B2 A' z  
E,U EZ A,+BT A'+A" x,  y  
Ea« E2" A2+B2 A'+A" 

Orbital 
designations 

for C2v/ Q 

yz,xy 
.r-2T, xz 

y 
z ,x  

Table (6.1) Relative symmetries and labels for TiCp2. See text for a note on the 

rotation of the Cartesian axes. 

-2v 

De D= 5h ^5d 

Fig. (6.1) Relative geometries of the four possible point groups of TiCp2. 
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B. Hartree-Fock Analysis 

Preliminary calculations were carried out at the Hartree-Fock level. As 

shown in Table (6.2), the ROHF/6-31G** 3B, (C2v) and 3A" (Cs) optimized geometries 

are nearly degenerate, and both lie 18.6 kcal/mol below the analogous JA2 (D5h) 

state, which itself is nearly degenerate with the 3A2 (DM) state. Similarly, the RHF 'A, 

state in C2v symmetry lies just 0.1 kcal/mol below the 'A' (Cs) state, and 9.4 kcal/mol 

below the 'A, (D5h) and 'A, (D5d) states, where the latter two are essentially 

degenerate. The 'A, (C2v) state is 39.3 kcal/mol above the !B, (C2v) state at this level 

of theory. All of the geometries at the HF level have the Cp rings within roughly 6 

degrees of being parallel. Of course, D5h and DM symmetries force the rings to be 

exactly parallel. Inefficient overlap of the cyclopentadienyl py orbitals is the most 

likely cause for the lack of bending of the Cp-Ti-Cp angle in Cs symmetry. 

Numerical Hessians performed at this level show imaginary frequencies for the C2v 

and Cs geometries, while for higher symmetry (except triplet D5d which has a small 

imaginary frequency) the geometries are positive definite. All attempts to step off 

these imaginary modes (as one does in an intrinsic reaction coordinate calculation, 

for example) and isolate a positive definite geometry failed. This may suggest that 

the numerical Hessians are very sensitive to step sizes due to the low-frequency ring 

modes. 

For the triple-zeta basis set, one sees qualitatively similar behavior. It is 

especially revealing that the relative RHF/PVTZ//RHF/6-31G** energies are 

essentially identical to those for the full RHF/PVTZ optimization, as seen in Table 

(6.3). This suggests that the 6-31G** geometries are adequate at the Hartree-Fock 

level. Based on the results in Tables (6.2) and (6.3), we conclude that HF theory 

predicts TiCp2 has a triplet ground state with C2v symmetry (3Bt) that is ~40 

kcal/mol below the lowest singlet (C2v 'A,). 



www.manaraa.com

'A, (C2v) 'A' (CJ 'A, (D5li) 'A, (D5h) 3B| (C2v) 'A" (CJ 
3A2 (Dm) 

W 

3A2 (DJ 
(e2')2 

£ 0 0.1 9.4 9.4 -39.3 -39.3 -20.7 -20.7 

HF 0 173.91 180.00 - - 178.21 180.00 - -

V 95 71b,16 - - 93,8b 71",6" 10b 
-

£ 0 2.1e 19.4 19.4 -15.0 -14.2' -6.0 -6.4 

DFT 
0 

V 

V 

(tight) 

158.87 

161 

26 

167.06 

161,119,27 

46 

127** 110b 

171.17 

153,57" 

180.00 

193b,154*,48 

153b,14 

118' 

23" 

109" 

£ 0 1.7 13.8 13.7 -21.0 -21.0 -6.4 -6.7 

MP2 0 148.43 180.00 - - 176.9 179.59 

v 28 52 10b 5b n/a n/a n/a n/a 

* intensity less than 0.001 debye/amu Â2 

b zero intensity 
c the geometry is considered converged at a RMS gradient of less than 6.9 x 105 hartree/bohr rather than the 
usual default of 3.0 x 105. 

Table (6.2) Energies, £ (kcal/mol) are relative to the corresponding 'A, (C2v) state; 6 is the Cp-Ti-Cp angle; v 

(cm1) are the imaginary frequencies, v (tight) are the imaginary frequencies with the tight grid - see text for 
explanation. The 6-31G** basis is used throughout. 
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HF/PVTZ// 
HF/6-31G** 

'A, <C2v) 'A' (CJ 'A, (Dm) 'A, (P5h) 'B,(C,t) 'A"(CJ 

0 0 15.1 15.1 -36.1 -36.1 -20.2 -20.2 

HF/PVTZ 

£ 0 

0 174.27 

v 102 

0 

180 

32b 

15.1 15.1 -36.1 

178.26 

105 

-36.1 

180.00 

77b,7'1 

-20.2 

10b 

-20.2 

B3LYP/PVTZ// 
B3LYP/6-31G4* 0 1.8 24.1 24.1 -13.3 -12.7 -7.2 -7.4 

£ 0 1.8 24.1 24.4 

B3LYP/PVTZ 0 160.98 169.9 

v 167 161,129',42 136" 136b 

-13.1 -12.4e 

171.37 180.00 

141,61b 192b,151,54a 

-7.2 

128' 

-7.4 

123 

(U)MP2/PVTZ// p n 

(U)MP2/6-31G** L u 2.0 19.9 19.7 -5.0 -4.4 -5.5 -6.3 

(U)MP2/PVTZ 
£ 

0 

0 

148.63 

2.0 

180 

20.1 19.8 n/a 

n/a 

n/a 

n/a 

n/a n/a 

CCSD(T)/6-31C**// p 
(U)MP2/6-31G** c 0 0.4 4.2 3.9 -19.3 -19.2 -6.5 -6.8 

CCSD(T)/PVTZ// n 
(U)MP2/6-31C" L 0 0.5 6.8 6.5 -7.5 -6.9 -7.5 -8.3 

4 intensity less than 0.001 debye/amu Â2 

b zero intensity 
the geometry is considered converged at a RMS gradient of less than 6.9 x 105 hartree/bohr rather than the 

usual default of 3.0 x 105. 

Table (6.3) Energies, £ (kcal/mol) are relative to the corresponding 'A, (C2v) state; 0 is the Cp-Ti-Cp angle; v 
(cm1) are the imaginary frequencies. 
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C. MCSCF/GVB Theory 

Based on previous calculations for TiHi/20,121 and Ti2H6/
122 one might expect 

TiCp, calculations to require a multiconfigurational wavefunction. To assess the 

need for such a wavefunction, the singlet MP2 natural orbitals were used as a 

starting point for a TCSCF calculation with the MP2 HOMO (3d^) and LUMO (4pJ 

as the (2,2) active space. The resulting natural orbital occupation numbers (NOONs) 

in the active space show very little multiconfigurational character: 1.992 and 0.008 

electrons in the HOMO and the LUMO, respectively. Using triplet TCSCF orbitals 

as a starting guess for singlet TCSCF results in the same occupation numbers. Even 

after TCSCF optimization starting from the bent MP2 structure, the NOONs 

changed very little: 1.995 and 0.005. For the triplet TCSCF, NOONs are 1.000 and 

1.000. A second diagnostic are the NOONs resulting from a MP2 calculation itself. 

It has been shown123 that if these occupation numbers are significantly unphysical, 

i.e. much greater (less) than two (zero), the system is likely to require a multi

configurational wavefunction, since this behavior suggests the single-reference 

Hamiltonian has broken down. In the case of TiCp,, the MP2 NOONs range from 

2.0018 to -0.0075, where we have included all four geometries. These are not 

significant deviations from the physical expectations. We therefore conclude that a 

single-reference wavefunction is appropriate for TiCp,. 

D. Density Functional Theory 

Density functional theory calculations shown in Table (6.2) show a 

quantitative, but not qualitative shift relative to the Hartree-Fock results. 

Comparing double-zeta results, the lowest energy structure is still the B, state, but it 

now lies only 15.0 kcal/mol below the lowest singlet (C2v 'A,), and the 3A2 states lie 

9.0 kcal/mol above 3BV The triplet geometries remain within nine degrees of linear, 

but the singlet C2v and Cs geometries bend by an additional 15.0° and 12.9° - to 158.9° 

and 167.06°, respectively. The imaginary frequencies remain qualitatively similar to 

Hartree-Fock, with some exceptions. Both the singlet and triplet Cb geometries 

display three imaginary frequencies using the default DFT grid size in GAMESS; 
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however, these become similar to the Hartree-Fock values when a tighter grid is 

used. Similarly, all but one (Dy 3A^) of the imaginary frequencies, with zero or very 

small intensities calculated using the default grid for the and D5h geometries, 

disappear when the tighter grid is used - again similar to Hartree-Fock. 

There are very small quantitative changes in going from a double-zeta to a 

triple-zeta basis set; ~2° in the geometries, -1-5 kcal/mol in the relative energies, and 

-10-15 wavenumbers in the imaginary frequencies. It appears that very little is 

gained by increasing the size of the basis set, although the splitting between the 

triplet geometries is reduced to 5.9 kcal/mol. Single-point energies at double-zeta 

geometries agree with full triple-zeta optimizations to within 0.3 kcal/mol. 

While the singlet-triplet splitting is reduced to -13 kcal/mol, compared with 

-40 kcal/mol for HF, DFT still predicts a triplet ground state for TiCp,. 

E. Second Order Perturbation Theory 

The MP2/6-31G** results [Table (6.2)] are very similar to those summarized 

above for DFT: The 3B, (C2v) ground state is predicted to be -15 kcal/mol below the 

higher symmetry triplets and -21 kcal/mol below the lowest energy 'A, (C2v) singlet 

state. One again finds small (~15i-50i cm'1) imaginary frequencies, due to 

instabilities of the numerical hessians. This picture is significantly altered when the 

larger triple zeta basis set is used, as shown in Table (6.3). Now, all of the triplets are 

within -1 kcal/mol of each other, with the higher symmetry DH and D5h structures 

slightly lower in energy. The ground state is still predicted to be the triplet, but now 

only by -6 kcal/mol relative to the C2v 'A, singlet. The latter is still predicted to be 

the lowest energy singlet structure. 

F. Coupled Ouster Theory 

To further evaluate the relative energetics, CCSD(T) [UCCSD(T)] calculations 

were performed at the singlet [triplet] MP2/6-31G** [UMP2/6-31G**] geometries 

using the 6-31G** and PVTZ basis sets. The results are qualitatively similar to the 

perturbation theory results, as seen in Table (6.3). Note that because of program 
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limitations, the restricted Da (D5h) energy is evaluated using the Abelian C,h (C2v) 

point group. Based on MP2 and HF calculations, the Abelian energy is artificially 0-

10 kcal/ mol low due to split degeneracies. This is not an issue for the unrestricted 

triplet calculations. For the 6-31G** basis set, all the triplet geometries are more 

stable than the lowest singlet, and the splitting between triplet C2v,Cs/ is 12.8 

kcal/mol. As in the MP2 case, there is a qualitative shift when the PVTZ basis set is 

used; the triplet geometries are all still lower in energy, but in this case the lowest 

energy structure is the 3A, (D5h). This further suggests that the lowest energy 

geometry of the monomer is indeed linear. As for MP2, there is also a significant 

basis set effect on the singlet-triplet splitting. The triplet is lower than the lowest 

energy singlet, lA, (C2v), by only ~8 kcal/mol at this level of theory. 

IV. Conclusions 

At all levels of theory, the triplet geometries are all lower than the lowest 

energy singlet, and as a general rule, the splitting between the high symmetry and 

low symmetry triplets becomes less as the level of theory is increased. In all of the 

above calculations where double- and triple-zeta optimizations are feasible, it is 

found that triple-zeta energies at double-zeta geometries reproduce the results of 

full triple-zeta optimizations to within 0.3 kcal/mol. At all applicable levels of 

theory, Hartree-Fock, B3LYP (with sufficiently tight grid) and MP2, the numerical 

Hessians show the high symmetry, linear geometries are positive definite or have 

imaginary frequencies with wavenumbers less than 20 cm"1. Based on these data, we 

conclude that bis( rç3-cyclopentadienyl)Ti is a paramagnetic triplet with freely 

rotating Cp rings. All attempts to synthesize this compound in the literature result 

in a diamagnetic singlet, which lends support to the suggestion that the true 

structure is some form of the dimer. 

It is particularly enlightening to compare these results with those of the early 

theorists introduced in the Introduction. Recall that before Watt and Baye's failed 

synthesis of Fischer and Wilkinson's "titanocene," this compound was assumed to 

have a molecular formula of (QH^Ti, which allows us to compare directly with the 

early results. Fig. (6.2) shows the UHF orbital energies (in hartrees) for the 3A, (D )̂ 
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state at the UMP2/PVTZ/ /UMP2/6-31G** level. Compared with these are the 

relative orbital energies given by Dunitz and Orgel in 1955 using approximate overlap 

integrals, and building from the group theoretical presentation given by Moffitt in 

1954. It seems that their only error was an overestimation of the stability of the 

metal orbitals, in particular the metal's alg valence orbital. This profound and 

striking result is a testament to the power of group theory in the hands of clever 

chemists. 

3A2 UMP2/PVTZ (D5d) Dunitz & Orgel: 

0 . 1 5 2  
0  . 1 4 8  

0 . 1 0 3  

a ig 
lu 

a l g (4s)  

M4s) 
ig 

- 0 . 2 9 7  

- 0 . 3 2 4  

- 0 . 3 3 8  £4. ejg 
lu 

% t-
e ig 

• 0 . 5 0 4  -h— a 2 u a 2 u 

" ̂ Ulg 

• electron associated with Cp ring 

f • electron associated with Ti atom 

Fig. (6.2) Orbital interaction diagrams for the present work and for that given by 

Dunitz and Orgel in 1955. Energies are given in hartrees, but the drawing is not 

strictly to scale. 
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CHAPTER 7: GENERAL CONCLUSIONS 

Schrôdinger's equation, Eq. (1.1), represents the first principles of non-

relativistic quantum mechanics, and is the starting point for all the studies contained 

in this dissertation. Let us briefly review the thread that ties this volume together. 

In the General Introduction, we saw how one can integrate out the time 

dependence of Eq. (1.1) to leave the time-independent form of Schrôdinger's 

equation: 

H\yf) = E\iff) (1.5) 

Using the Born-Oppenheimer approximation, the Hamiltonian, H, was simplified, 

and using the orbital approximation and the antisymmetric property of the 

electronic wavefunction, we arrived at the Hartree-Fock equations, Eqs. (1.37). To 

make the resulting problem tractable, it was described how the wavefunction is 

further approximated by expansion in terms of well-defined basis sets. Using 

Hartree-Fock theory as a starting point, we explained how the method relates to 

unrestricted Hartree-Fock theory, MP2 perturbation theory, CI theory, MCSCF 

theory, coupled cluster theory, and DFT. 

For many problems, especially large ones such as discrete solute/solvent 

interactions, the methods described in Chapter 1 become unsuitable because of the 

computational time required. In order to study such systems, hybrid quantum 

mechanics/ molecular mechanics techniques have been developed, such as the 

Effective Fragment Potential, described in Chapter 1. One of the interactions that 

must be accounted for using this method is charge penetration between distributed 

multipolar expansions, and this is derived and tested in Chapter 2. 

The Hamiltonian derived in Chapter 1, Eq. (1.7), is for an isolated system, free 

from the effect of perturbing fields. A powerful experimental spectroscopy, nuclear 

magnetic resonance (NMR) measures the so-called chemical shifts of nuclei in the 

presence of a magnetic field. In order to account for the effect of the magnetic field 

theoretically, an appropriate vector potential must be added to the Hamiltonian; this 



www.manaraa.com

130 

was done in Eq. (3.1). It was described how the use of a vector potential leads to a 

gauge dependence in the solution of the Hartree-Fock equations when a finite basis 

is used, and how this dependence can be removed using Ditchfield's gauge-

invariant atomic orbitals. It was explained how the physical property of chemical 

shifts can be defined as a second derivative of the energy with respect to the external 

magnetic field and the nuclear magnetic moments, and this derivative was 

evaluated in detail. The resulting integrals were further evaluated using the 

McMurchie-Davidson method, and coded into GAMESS using the modified 

algorithm described. The chemical shifts were also shown to depend on the first 

derivative of the density matrix, whose evaluation was seen to require 

antisymmetric perturbation theory for nonorthogonal, perturbation-dependent basis 

sets. This formalism was also derived in Chapter 3. Finally, it was explained how 

our ultimate goal is to predict chemical shifts in solution, so several possible 

approaches were given on how to integrate the EFP method with the GI AO 

formalism. The next step in future research should be to replace the ab initio density 

matrix with the density matrix in the presence of fragments and investigate the 

influence of the fragment solvent at this level of approximation. 

A conventional application of the EFP method was given in Chapter 4, which 

studied the solvation of formic and acetic acids. Although the preliminary results of 

this study were promising, it was noted that further progress in this area awaits an 

appropriate Monte Carlo or molecular mechanics code because of the currently 

inadequate method for sampling configuration space. Once this code is available, 

the presented work should be repeated to investigate the degree to which the 

sampling of configuration space is complete. If the Monte Carlo sampling is 

adequate, more solvent molecules should be added until dissociation of the weak 

acid is achieved and can be studied in detail. 

The theoretical methods described in Chapter 1 rely on various levels of 

approximation. It has long been the goal of the quantum chemist to obtain 

thermodynamic levels of accuracy; i.e. roughly within 1 kcal/mol of experiment In 

order to accomplish this, many hybrid schemes have been developed, most notably 

Pople's G2 and G3 methods. Chapter 5 explained how this method is only useful for 

systems that are well-described by a single electron configuration, or loosely 
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speaking, a single Lewis structure. It was further explained that many interesting 

chemical systems require a multi configurational wavefunction, and the chapter 

went on to describe multi-reference versions of several G2 and G3 techniques and 

reported their performance in detail. The results indicate that the Gn-type additivity 

approximations hold less well for the MR-G/t methods than they do for the parent 

single-reference Gn methods. This leads to the somewhat fortuitous situation in 

which incorporation of additivity approximations in the MR-Gn procedures results 

in an accuracy which is better than that of MR-Gn/ MRCI+Q and is generally 

comparable to that of the corresponding single-reference methods. MR-G3(MP2) is 

the most accurate of the MR-Gn methods that we have examined; the mean absolute 

deviation between calculated and experimental values for the test set of (123) 

energies is 1.22 kcal mol"1, compared with 1.19 kcal mol1 for standard G3(MP2). 

Finally, Chapter 6 discussed the electronic structure of the complex 

organometallic molecule titanocene. The history of the study of this species was 

discussed, and the results of many high level calculations such as DFT and MP2 

with a triple-zeta basis set were evaluated. At all levels of theory, the triplet 

geometries are all lower than the lowest energy singlet, and as a general rule, the 

splitting between the high symmetry and low symmetry triplets becomes less as the 

level of theory is increased. At all applicable levels of theory, Hartree-Fock, B3LYP 

(with sufficiently tight grid) and MP2, the numerical Hessians show the high 

symmetry, linear geometries are positive definite or have imaginary frequencies 

with wavenumbers less than 20 cm'1. Based on these data, we conclude that bis(rf-

cyclopentadienyl)Ti is a paramagnetic triplet with freely rotating Cp rings. All 

attempts to synthesize this compound in the literature result in a diamagnetic 

singlet, which lends support to the suggestion that the true structure is some form of 

the dimer. Similar calculations carried out on the suggested forms of the dimer 

should lead to further understanding. 

As was noted earlier, all of the above results can be considered approximate 

solutions of Eq. (1.5) which in turn is an exact solution of Eq. (1.1). It should be 

noted, however that this form of Schrôdinger's equation itself is approximate, as it 

does not incorporate relativistic effects. It has been further argued that the 

relativistic form of this equation, the Dirac equation, is also approximate, since in 
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their present state, quantum mechanics and general relativity are mutually 

inconsistent. (Dirac himself spent his later years searching in vain for an alternate 

formulation for quantum electrodynamics.124) Having said that, however, it should 

be noted that quantum mechanics is the most precise physical theory known to man, 

and as such is unlikely to be superceded for chemical applications - it has been, and 

will continue to be, the quantum chemist's first principles. 
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APPENDIX A. CARTESIAN VS. SPHERICAL HARMONIC 
FUNCTIONS 

There are several ways to approach the idea of spherical harmonic functions. 

A particularly elegant way introduced to me by Prof. David Hoffman takes 

advantage of the idea of a tensor, and shows the relationship between spherical and 

Cartesian functions very well. 

Consider a Taylor expansion of a function f(x, y, z) : 

/(.v,y,z) =/0 + x X 
dx + <  -I 

1 + — 
2 

x 2*L 
dx2 

+ xy 37. 
3xdy 

(A.l) 

dz2 
0 /  

where in total there will be three linear terms, nine quadratic terms, 27 cubic terms, 

etc., and each derivative is evaluated at the origin. Note that since the order of 

differentiation is irrelevant, several of the terms given above are equivalent. The 

"coefficients" (components) preceding each derivative can be found using the 

following: 

x'ymzn (A.2) 

where l + rti + n = N, (c.f. the original Taylor expansion given above: for the single 

derivative terms, N = 1; for the second derivative terms, N = 2, etc.) Further note that 

although there are 3'v total components, some are identical, as noted above. In fact, 

only 

( N + 1 X N + 2 )  

components are distinct. 
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Consider now an arbitrary vector r = r(x,y,z). [In general, (r-r) can be 

thought of as one long vector with 3'v components, N being the number of r's. c.f. 

Eq. (4.5).] If this vector is rotated in some way, then its new coordinates can be put 

in terms of its old coordinates: 

x' = x'(x ,y,z) 

y' — y'(x,y,z) (A.4) 

z' = z'(x,y,z) 

Unintrusive rotations are described by a unitary (or, if all the elements of the vector 

are real, as in this case, orthogonal) transformation. For example: 

x = Uxx.x' + U^y' + Uzz.z' 

y = Uyx,x' + UyyY + Ur.z' or Ur' = r (A.5) 

z = + Uzy.y' + L/„.z' 

Since the equations given above are linear, it follows that the old components 

of r, (x',y'",zn) can be written as some linear combination of the new set 

(x/Z ,y'm ,z'" ) where as before, l' + m' + n' = N. 

So in effect, the 3'v components of (r - r) form a 3N-D basis for the full rotation 

group. Further, since the matrix that relates r to r' is unitary, (as shown above) then 

the 3N x 3N matrix that relates the components of (r - r) to (r'---rz) is also unitary. 

This is important because the 3N elements of (r - r) form the basis of a 

representation of the full rotation group with dimension (N + 1 )(N +2)/2, called the 

Cartesian representation. 

Sets of components that form the basis for unitary representations of the full 

rotation group are called tensors. Tensors are then eigenvectors of the Hamiltonian 

and £r if the potential of the system is spherically symmetric, as it is with the 

hydrogen atom. 
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Referring back to the original Taylor expansion, a zeroth rank tensor is a 

scalar (f0), a first rank tensor can be written as a vector: 

v2/ 

(A.6) 

A second rank tensor can be written as a matrix, 

z  n  \  
x xy xz 

y* y yz 

yzx zy z-

(A.7) 

and a third rank tensor can be imagined as a cubical structure. It should be 

remembered that this is just a nice way to keep track of the components of the 

tensor; all are properly viewed as the elements of one long vector. 

Here's where we make the connection to chemistry. If N = 0, we have a 1-D 

representation of the rotation group. As a constant (e.g. /0) , this represenation is 

independent of any angle, and thus forms the basis for the totally symmetric 

representation, and is an eigenfunction for the hydrogen atom Hamiltonian. This 

function is called an ^-function, which corresponds to the s-orbital an average 

chemist is familiar with. 

If N = 1, the first-rank tensor has three components which form the basis of a 

3-D irreducible representation. (The representation must be irreducible since each of 

the rotations around the x, y, and z axes don't commute with one another.) These 

elements are the eigenfunctions of the Hamiltonian and L2 that form the 3-D p-

functions, which have the following angular dependence: 

x = rsin0cos0 

y = rsin0sin0 (A.8) 

z=rcosO 
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Finally our story comes back to GAMESS and the work I've been doing. UN = 2, the 

second rank tensor forms the basis of a 

£±JB±2-6 (A.9) 

dimensional representation of the full rotation group. The question then becomes, is 

this 6-D representation irreducible? The answer is no, as one can demonstrate: write 

the second rank tensor as 

, r~ 
X ~ 3~ 

yx 

zx 

xy 

zy 

xz 
' 1 0  0  

r2 r~ 
0 10 

T * 
4 

3 
0 10 

, r2 ,0 0 1 
z" 

3, 

(A.10) 

Since the second term only depends on r, it is invariant under rotations, and so is a 

representation of the totally symmetric group (s-functions) . The remaining tensor 

has five independent components since x2 + y2 + z2 = r2, thus 

i * 2  "  t )  ' + ( y 2  ~ T ) + ( z !  "  y  ) * r 2  " r 2  = ' 0  ( A 1 1 )  

And so the third component (usually the z) can be written in terms of x and y. (i.e. It 

is not linearly independent.) Note that the remaining tensor is both symmetric and 

traceless; it can be shown that tensors with these characteristics always form the 

basis of irreducible representations. And so we have a 5-D irreducible 

representation of the full rotation group, and the familiar ^-functions and orbitals. In 

effect, we have used a spherical harmonic basis to form the 5-D representation, 

whereas a 6-D representation was required for Cartesian space. Historically, it was 

easier and faster to use Cartesian functions in quantum calculations, and those 
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functions were used rather than spherical harmonics. My project was to provide the 

option to use the spherical functions in GAMESS. 

This was accomplished using code written by Michel Dupuis at IBM that was 

already used in his quantum chemistry package HONDO. GAMESS in large part 

grew out of HONDO, and much of the code is the same. Dupuis' code removes the 

linear dependencies found in the Cartesian basis, and leaves the spherical harmonic 

functions. 

This removal of linear dependence is accomplished as follows: This is a 

summary of what can be found in E. Hollauer, and M. Dupuis, J. Chem. Phys. 96, 

5220, (1992). 

Similar to HONDO, GAMESS obtains all the symmetry information on a 

given molecule by way of its Schoenflies point group symbol, and the specification 

of its coordinates relative to a given axis. (e.g. In GAMESS, the z-axis is the principal 

roatation axis, and xz is the av plane, etc.) Once these data are given, GAMESS will 

use the appropriate character table to generate a Symmetry Adapted Linear 

Combination (SALC) of atomic orbitals; the atomic orbitals being the given basis set. 

In effect, linear combinations of the basis functions are formed such that the new 

functions obey the symmetry of the molecule. This is accomplished by means of a 

so-called SALC matrix, W. 

Let S be the overlap matrix of the given basis set: 

Then W is constructed such that the overlap matrix, S, of the SALC orbitals can be 

written as 

(A.12) 

S  =  w s w  (A.13) 

Once this is done, the overlap matrix of SALC orbitals is block diagonal, each block 

corresponding an irreducible representation of the point group of the molecule. In 
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this form, it is easy to diagonalize this matrix and find the eigenvalues and 

eigenvectors: 

matrix of eigenvectors of S with eigenvalues s. If any of the SALC functions are 

linearly dependent, then a corresponding eigenvalue 5 will be very close to zero. 

(The closer to zero, the greater the degreee of linear dependence.) Any 

eigenfunctions whose corresponding eigenvalue is below a certain threshold are 

dropped, and in this way, the linearly dependent functions are removed. In 

GAMESS, this threshold is 1.0 x 10 *. From this point, a matrix Q is defined and used 

to bring us back to the familiar pseudo-eigenvalue problem that arises from a 

Hartree-Fock formalism. (See Szabo and Ostlund, Section 3.4.4., p. 140.): 

SU = sU (A.14) 

It is at this point that the elimation of linearly dependent functions occurs. U is a 

Q = WUi 2 

irwswus (A.15) 

i y 
irsui 2 

If one redefines the Fock matrix and its pseudoeigenvectors in terms of this Q 

matrix, then the above can be used to modify the Roothaan equation: 
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F = Q FQ ; C = QC 
=> FC = SCe 

=> FQC = SQCe (A.16) 

=»Q FQC = Q SQCe 

=>FC = Ce 

Q is block diagonal like S, so that the transformed Fock matrix is also now a block 

diagonal Lo x L0 matrix, where L0 is the number of linearly independent functions 

(MO's). (Q is L, x Lo, where L, is the original number of linearly dependent 

functions.(AO's)) 
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APPENDIX B. GRADIENTS (V), DIVERGENCE (V ) AND CURLS (Vx) 

The following vector identities are relevant to the derivations contained in 

this dissertation. Many can be found in any text on vector calculus, although two 

(B.17 and B.18) were derived by the author in the course of his research. Short 

proofs are provided for clarity for those dealing specifically with the positional 

vector r. F, G, H, and I are general vectors. 

Some definitions: 

r = (x2 + y2 +z2)2 r = (x.r + yy+ zz) r r = — 
r 

x y Z IfA - f- K )  
Fx V = F, K  F. = 

<)x Ju 
a 

lF4 - F A )  

B.l) F x G = -G x F 

B.2) F • (G x H) = (F x G) • H = G • (H x F) = H • (F x G) 

B.3) F x (G x H) = G(F • H) - H(F - G) 

B.4) (F x G) • (H x I) = (F • H)(G • I) - (F • I)(G • H) 

=  1  

ap 

v = d . d . d ) 

B.5) VxV/ = 0 

B.6) V-(/F) =/(V-F) + F-V/ 

B.7) V x (/F) = /(V x F) + V/ x F 

B.8) V (FxG) =G(V xF)-F(V xG) 

B.9) V x ( V x F) = V(V • F) - V2F 

B.10) Vx(FxG) = (G-V)F-(F-V)G-G(V-F) + F(V-G) 

B.ll) V(F-G) = (F-V)G+(G-V)F + Fx(VxG) + Gx(VxF) 

B.12) Vr = r 

Proof: 
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Vr=H+i,i+ââ)'v+y2+z2)' 

= x^-(.y2  +y2  +z2)2  + y^-(.Y2 + y2 + z2)2 + z^-(.y2  +y2  + z2)2  

dxx  '  dyx  7  dzx  z  

= x^-(-y2  +y2  +z2)  22.Y + y-^(x2+y2+ z2)  22y+ z-^(.y2+y2+z2)  22z 

= x—+ y—+ z- = -(x.Y + yy+ zz) = -  = r Q.E.D. 
r r r r r 

B.13) Vf(r) = r$P-
dr 

Proof: 

v / ( r ) -(^+*i+ i iy< r )  

=il/(r)+yt/(r)+*l/<r) 

_ . df(r) dr | . df(r) dr | > d/(r) dr 
t/r dx dr dy rfr dz 

dr 

B.14) Vr/(r)  = 3/(r)  + r^ 
dr 

Proof: 

V r /(r) = V(x.y + y y + zz)/(r) + (x.y + yy + zz)V/(r) 

(A d A d * d I / A A A X *. % /A A A X | A d A d 1 d | 

x&+y^+zE),'T+yy+zz)/(r)+(x't+yy+zTâ?+y^+z^J 

= ?>f(r)+[xx + y y + zz}i~~-

= 3/(r)+(xx +  yy +  zz)My^i>^2 

. 3/(r) + . 3/(r) + ̂ #1. 3/(r) + Q.E.D. 

B.15) Vf = — 
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Proof: 

Vr  =  V—= —+ rV—= —+ rV —= —+ r r—r~ l  

B.16) V2 r  r"~l =r  (n + 2)(n - Or"-2 

Proof: 

V 2 r  r"'1 =V(Vrr n _ 1  +rVr n l )  =V^3r" _ I  + r r -^ - r "~ l j  

=V[3r"- '  +r(n-l)r" 2]  = V[3rn- '  + (n-l)rM-1]  = (n + 2)Vr"-

= (n + 2)Vr"-1 = r(n + 2)(n - l)r"'2 Q.E.D. 

B.17) V#V) = ><*'/( r) 
Jr rfr 

Proof: 

Q.E.D. 

B.18) V:r/(r)=r[4^i + r^A^l 
L dr dr~ J 

Proof: 

V2 r/(r) = V[V r/(r)] = v[a /(r) + r^l 

= 3 Vf(r) + Vr + rV 
dr dr 

df(r) df(r) • à1 f{r) 
- 3 r  dr '  dr + r t  dr2  

=  fH^+r^ 
rfr rfr' 

Q.E.D. 
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APPENDIX C. GAUGE INVARIANT ATOMIC ORBITAL 
DERIVATIONS 

C.l) The general expression for the magnetic field induced by a current distribution 

in atomic units is given by the Biot-Savart Law:135 

H = (C.l.l) 
c~Je r 

where j is the current density (with SI units of A m2), r is the point where the field is 

observed, and dv is an element of volume. Therefore the volume current element is 

defined as j dv. We can further modify the form of Eq. (C.1.1) as follows: 

H  =  4 f d v V x i  ( C . l  . 2 )  
c~Jr r 

since 

vxi=v[l)x i=-^x i=i^: (c.i .3) 

such that the curl can be pulled out of the integral to easily identify the vector 

potential: 

H = V x 4 f  d v t  

A U J i ' 1 ,< <" <C1'4) =>A = — I dv — = —l9 — 
c~Jv r c~ Jc r 

where we have applied the specific case for which the current is constrained to flow 

along a thin wire, and it is convenient to replace the current element j dv with / d\, 

where / is the current and dl is a element of length. The current physical situation is 

given by Fig. (C.l.l): 
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C 
Fig. (C.l.l) Physical representation of Eq. (C.l.4) 

The integration is around the closed circuit, C. Then, using Stokes' Theorem: 

jc(j>dl=^dSxV<l> (C.l.5) 

where S is the surface area; then 

A = lfJsd5xV0[l) (C.l.6) 

The physical picture is now given by Fig. (C.1.2): 
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Fig. (C.l .2) Physical interpretation of Eq. (C.1.6). n is a unit vector normal to the 

volume element dS. 

Note that 

(C.l.7) 

Then if we assume the current loop is very small, as in an atomic nucleus, we can 

assume r and r to be constant, and pull them out of the integral: 

(C.l.8) 

where the nuclear magnetic moment has been defined as 

g = f Js dS = /Js ndS = -ljcrxdl (C.l.9) 

[Note that Ditchfield does not associate the factor of 1/c2 with this term; instead, he 

uses a factor of 1/c before the total vector potential in Eq. (3.1), following many 

authors. See footnote after presentation of Eq. (3.1).] 

C.2) 
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If we expand the kinetic and magnetic parts of the Hamiltonian, Eq. (3.1), and 

evaluate the resulting terms: 

(-/V, +^A'(r,)j =|-'V, +~A'(ry)Y-iV/ +^A'(ry)j 

= -V; - • A'lry »)-L
c(A'(r,) • V,) + 4- A'!(r, ) 

= '"v; " A'<r, )) - f(A'(ry ) • V, ) + 4f A'S > 

(C.2.1) 

and since we are using the coulomb gauge, which by definition requires 

V, A'(r ) = 0 (C.2.2) 

The other terms are 

A'(r/)-Vy = IHxr,+S^ 
B rjB 

•V 

-lH xr , .V,+X'1 'X ;f  v-
B jB 

B 'jB 

— a a.B 4 

(C.2.3) 

using (B.2), and 
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A' !(r ,)=UHxr,+2 
^ R 

=(iHxt'){5Hxr')+(lHxr'){;̂  
+l r,g j (I 

6 rjB 

•I ^Hxry |+| % 
 ̂x r;B 

\ 

X" 

/" X
 

2 .  -3 
) 1 B' 'B' J 

- X 9 H«(r; • r/^ ~ riar,p)^HP + Z ?H« 
a.p • 

1  r r  (®ii rjB^afi VjBfi) 

B.a.fi • 
V-BP 

'jB 

V .. {T lB' rfia0 r iBa r ip) 1  , V ,,  ( r ,6 '  T jB^ap r jBa r jB'p) 
2^ "BO 3 ~ 2^ "B« 

(C.2.4) 

B.cr.0 /B B.B'.cc.p 
r
3 *»3 
jB jB' 

Mb'0 

using (B.4). Note that the last term here has been dropped since it corresponds to 

'// ̂ 0 2), which is not included in this discussion. (It is the mutual interaction of the 

nuclear magnetic moments, which is related to spin-spin coupling.) Therefore, 

A'2<r, ) = ~ V»)He +I".  ( r ' r 'A '  (C.2.5) 
"• a./3 » " « ' B.a./i 

All of which makes Eq. (3.1) 

^(H,ii)- |x |f~v /  ~~(A ' ( r /)v /)+p"A '2( r /))-2S :~ +Z™"+E 
/ IV C C / B rjB i*l ~jl BtD 

ZBZD 

Ra BD 

-V;-fHlH.tr,  XV,).+ I^ ( t ,;3
X V ' l  

L \ " a.B 4 

l +— 
<r I HJr' r"V"r'w)̂ / 

B.a.p 
// 

-2%^ 
B r/B 

i*l rjl B*D **BD 
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=1 

4v î-£Zw-( r 'x V ') .-£—7^ 
^ M. r, c a g ' .1 'yfl 

-  V m)H,+^ s  tot- v 'w )  

«0 2c B.a.p 
t*RP 

'jB 

-if^ 
B jB 

(  +  ̂ J_+^^o 
;>/ jl BxD nBn 

- y 6 'jB jtl >jl B*D nBO -c a y c a.fl y 'yfl 

0C a./3 y -c B.a.p j 

l (ry'ryB^a/} rjarjBp) 
^ Bp 

'lB 

C.3) Begin by using definitions similar to that in Eq. (3.11,13) for first order terms, 

i.e. 
dP, 
dH 

= W) : 

/pd.o)\  _ ^Pvl{Ha,nBlj) 
{ vX ,a  dH 

. a 
dH„ 

cv7 ( ' Hep )CÀj ( Ha / HBP ) 
V i 

. d 
dH +NCL+-K -«.(«si").+-) |  

txr 

/ 
occ 

= 2l«-)/ï'-c™(4'0l 

/n<0.1)\  _ dPvX(Ha,liB0) 
1 6t" d/zB, 

. a 

dM B/3 
^^a'^-Bp)Cxj(.tia,^.Bp) 

V I 

= -i3^(2î(<,+i"s»te")s 
+ "XC™ -«M'S"), +-)j 

UCt" 

ixrc 
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C.4) Using Eq. (3.28): 

1GBVX )g 5-

=-'E<C,")„G" 
pa 

. a 

B0 y pa 1 
(0) 
vz#)<t 

(0) 
V/4XT 

pa 

Since G|9L does not depend on the nuclear magnetic moments. 

C.5) 

dE 
3/i BP 

f  3HV . ,  1 ac„ 

" S |IClH- + ÏG"J+P15^T 

= I H™ + let»' ] + + i(GÏÏ')# )| 

then, using Eqs. (3.28) and (3.32), 

dE 
d/* BP 

= 1 '-(Cl 
(0) 
VÀpff 

p«r 
(0) 

*"»?), *{l (O.G5 
p» 

(0) 
p^vXpa 

=•-I {(«•), H»1 - ifpr1c(H2a'),+ic(c,l),GSi.} 

recognizing dummy indices, we combine: 

dE 
d/i, [B0 

='I {(«') ,  H'« +C(HSi') ,} 
vXfia1 1 

=' I {(C'LK1+C'CIL)+C(fC).} 
VÀp<7 L J 

= 'X{(Ci")6(H™+G"')+C 
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Finally, using Eq. (3.26), 

dE 

du BP 
='X{(«'),C+c(HÏÏ'),} 

C.6) 

S - ds« 

since the overlap matrix does not depend on the nuclear magnetic moments. 

d/f Bp 

Sf-ifc")sC+<>(cLÏ') Is™ =0 
vX L J 

''l[<,(4ï,)e-(cS,)/™]s",=0 

SvÀ =0 

C.7) 
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dE 
fyBp 

='l{(p«r)6c+e(HK'),} 

-Œ 2 I [ K " ) / ï ï ' + c ( H ^ ' ) (  

—2l<'[0] + ,Xe(HK'L 
I V* 

='IC(H^'L 

C.8) Compare the first parts of this derivation with (C.2). Begin with Eq. (3.27): 

if -iV +1 A'(r) Y = V3 - i(v • A'(r)) --( A'(r) • V) + -L A'=(r) 
À\ C J 2 2C C 2 C~ 

where, as before, V • A'(r) = 0, and 

A'C)v4lH.(,xV),t£"-(r'1><V)-
Z a a.B rB 

and 

* a.0 B.a.p rB 

such that 

l (- ,v4AWJ=-lv=-i(l lH„(,xVVlM^k) 

2c-
(r'rB^qg ~rarBp) 

<*.P B.a.p 
P bp 
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such that the derivative with respect to the nuclear magnetic moments is evaluated: 

BP 
•  d L = - l -  (0 V -
dM BP 

= 7v" '  

(r ,xn 

Bp(rB X ^)f 

-1^ 

4 

8 rB 

C.9) 

Zl/(U>\ _  d~HV/L 

^ dHadnBp dHadfi 

= 3hs^^l{ï(-'v4a'(r,ï^^ 

3 W dHadllBp 

then, using the following commutation relation: 

[*,/*] = |-'V+^A'(r),e ' 1 | 

= iV + — A'(r)je '' * —e '' ' t'V + —A'(r)j 

= [-{-iA,) +1A'(r)je" 'A i  '  -^A'(r))  

= --Aa* c * =--A./. 

(C.9.1) 

we can move the point of reference of the vector potential from electron 1 to the 

origin of the second basis function: 
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{xv\\^\x,)=(< |/v'|w, M 

= {<l>v\fv ^*|/x*-^AAx)kx) 

= (^|/vA^|*-^A* j i^) 

which can be simplified: 

i t-—A. = -tV +—A'(r) ——A. 
c c c x 

= -v4[^Hx, +  X!b^.l„x R i]  

=  _ l V + i[ lH x( r-R i )  +  x!^] 

= _,V + i[iHx r i +Xl^] 

= -i'V +—A'(r) 
c 

[note that we have not used the strict definition of A', Eq. (3.3a)] to finally leave 

{xv\\^\Xx) = (0vl/vA+ ̂ A'(rjj |^) = (C.9.2) 

Returning to the derivative, we thus have 
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d (fjjv|^ici|0,) 
3Ha3//B/j 3Had//, 80 

dHa 

a 
3H 

\ 3/1, B/J 

i/v/A 
1 3ir 
2 3//, BP 

d/v/A 1 3*x 
3Htt 2 3//g^ 

3H„ 
1 3*i 
2dg B/J 

4>lJ+\fvfl*v 

<P  ̂

<l>xJ+(fvA4>v 

^W/v/A 

1 3*i 
2 3//, B/J 

*i) + [ fifth 
30* 
3// BHi 

i a2«i 
2 3H„3//B/j 

i a2«i 
2 3Ha3// BP 

<f>x) + {fiA<PV 

h 

1 d*I 3*i 
2 3//gy 3Ha 

The first term is then evaluated as the following, using a analogous form of Eq. (3.9): 

[See also (C.8).] 

3CA 1 3k2 

3Ha 2 3//b/j 
)=/#, — |.,v+1ax))" 

21 
-V" 

c 

r iff  
1 4 

+7 +7 
+H, /*80 

/ / 

=  ( 0 v  
3H„ 

2z(r6xV) f l  !  r r  [rvrB5 a / , -(r ,)>„), ,]  
„3 + -2 "a _3 c rp 

3H„ 

z L* 1 rr [r, 
"TT + TJ H° 3 

0, 

c rB 2c 

and since the derivative is taken at zero field strength, 

A-
3CA 1 3*% 
3Ha 2 3//g^ 

k)^UM 
3H„ 

4 
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Then 

_  3  ( ; [  A > - A , | r  

DHA DHA T J 

=5sr e xK? [ A- - A i l ' r)  

=èe^SHxR-HîHxR<)H 
=i:HSHxR"'rHiHxR<'r)I 

continuing, 

!^=è^ffiH R"x rMîH RH]) 

=as:exp(c[(lH-{R- xr}-Hi H-|R-x r}- )]) 
• x r L)-(iH" { R i  x r l«)] ( C 9 3 )  

= x ' ) .  -K x r)„] = ^[(R„ -R,)xrL = &±{Rvi x r)„ 

= ^[(T^)a+(Qvvl)a] 

Where we can verify the last step with the help of Margenau and Murphy, p. 139 

(actually just the distributive property as applied to the vector products) and zero 

field strength for the derivative: 
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£[(T„,)„ +(Q..L] = £[(r,a x r ,)+(R„ X RJL 

=^[(r.-ri)x(r-rv)+(r.xrjl 

^[(R,x r HR„xR,)-(R,x r W
R .xR„ | +(R,xR. )] e  

= ^[(Rv X r) - (Ri X r) - (R„ x RJ + (R„ x "JL 

=^[(R-x r)-(R-x r)L 

= £[(R--«UX 11 

-£(«-x ') .  

Such that the total first term is 

•Lm hj- ~Uv £[(TjB + (Q*)a] 
*5 

h 

Li 
»A+(CU„^. 4 

h 

Then the second term in the original derivative is 

Jv'/A 
1 a2*2 

2 BHadn a f*Bp 
h) = (fiA<Pv 

r r 
-r--* 

1 a2 

2 dHad/z^ 
1-iV^lAX))" <Kx 

-\fvfiQv 
d2 

2 dHadnBfS 

lH>,xV)a +^Mâ 
^ 'R 

w 

/*B0 

0, 

/ / 
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=to 

— [fvfiQv 

= 2?V" 

1 d 
f 

2/ r(r ,xV)J 

2dHa c 
I I  ̂ J 

1 „ k 'a^-kyr,),] 
+? ° S h 

fc-rBSog-faUOflf 

[r, 

h 

h 

Since in the end we take the derivative at zero field strength, which removes f*f. 

Finally, then, we see that 

aCA l a*2 

dHa 2 d/Zgg 
h)+(fvAh 

i a~«i 

4 

+  2 7 <  

2 dHad[xBQ 

h 
*5 

Px 

C.10) 

I * jB dH dH, 

_ a«* , 9G„i 

dHa dHa 

= aS-K' 

+ «.S{('S").G5i. +C(GSU + ̂ „I(C"LGi +. 
a L pff pff 

- f(HT). + X{(C" )«GÏ»+C(G%)J 
L p° 

C.11) 
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Consider the derivative resulting from (C.10): 

dH 

dH„ 

(/vA<|^-'v + ̂ A'(r^)j |0x) - X {fvfipy |) 

XK)-\XV 

J&L 
\*Ha 

J&L 
\  dH„ 

I , 

^ +a/A 
1 dir 
2dH„ 

/aq 
\dH t t  

7*I-X 
B '"B 

<M + (/v'/A 
1 dir 
2 3H 0x 

0x 

Then using (C.9.3), 

dH, vA 
dH 

_iv2 - Y ̂  
2 ^ * B 'B 

<t>l)+(fVÂh 
1 dir 
2 dH„ 

0 

Since 

zero field I ' 1 «-»5 
2 ' 2 

Finally, again using the analogous form of Eq. (3.9), we have 
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dH., 
dH„ -(£[(T*)„+(QJ„K "5v 2™Çf- 0, 

+(/v7A 
l d 
2dH 1 

+7 
+H. A*B0 

=̂ ([(t.aV(Q* Vt/tt |TV 
-—v2  — 

B rB 
f c / - * \ *  

kx V)„ 

= ̂ [{[(T"L +(Q«i)„KM*,)--(Aliil*,)] 

= ̂ [((T")„O,|Hl°1^) + (QtiL(0.lH™l0j-<0.K|0j] 

Such that finally, the first derivative of the core magnetic Hamiltonian is given in 

terms of familiar one-electron integrals: 

(«ri=-'§k[=-{^[((T«)„*,|H-|#l>+(Q»)„(*.|H'"k>-(#v|i4k>]] 

=è[K UIh"1a>+(q»L«|h"1a> -(*,ltik>] 

C.l 2) 

(x'px„\ xlx,) = (x'pxi\x'rx*)m +iHa(x'pXq\x'rXsf'°} 

= (x'PXi\XrX$0) + Ha-^(x'pX„\XrXs) 

Thus 
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{x'pxq\x'rx,f'0) = -i^-{x'px<\x'rx> 
3H„ 

I+ fpfM -'iH 
then using (C.9.3), we have 

(Wkr^) '  ~((̂ }[(T«)A + (QW)A)A +(QrS)aH< J  

= ̂ {(QPf) aMM) '+((T
W)a0AMS) +(Qr,)a(0P0>A) +(0A|(TJa 
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APPENDIX D. ANTISYMMETRIC PERTURBATION THEORY FOR 
FIELD-DEPENDENT NON-ORTHOGONAL BASES 

D.l) 

FRS = SRF 

=>(F'0' + F(1I)(R|0) +R(1))(S(0) + S(,)) = (S(0) + S(,))(R(0) +R(l))(F(0) +F(,)) 

/. F<0|R(0,S(0> + F<0)R<0)S(1) + F(0|R<1,S(0) + F<0|R<1,S(l) + F^'R^'S^' + 
p(t)R(0)g(l) p(l)R(l)g(0) _j_ p(l)R(l)g(l) 

= s'°'R'0,F'0' + S^'R^'F'1' 4" S'°'R"'F<0' + S^'R^'F11' +S<i>R(0iF(0) + 
g(l)R(0)p(l) g(l)R(l)p(0) g(l)R(l)p(t) 

D.2) 

RSR = R 

=>(R((" +R,1,)(S(0) + + R'") = (R^ + R'") 

/. R<°>S<0,R(0) + Rl0,S<0,R|I) +Rl0)S<1)R,0) + R(0)S("R(1) 

+ R(l,S(0)Rl0) + R(1)S<0)R<I) + R(,)S(,)R(01 + R(1|Sll,R<0) 

= R(0) +R(1) 

D.3) 

Up(0)UU-iR(0)u-,uS(')U + UF<0,UU*1Rll,U-1US<0,U + UF(1)UU-lRl0)U-1US(0)U 

= US<0)UU"1R(0'U"IUF<1)U + US<0)UU"1R<1|U-lUF<0|U + US(1>UU"1R(0)U-lUF(0)U 

U-lRl0)U™1USl0>UU-tR<l)U-1 + U-lR(0)U-lUS(1)UU-1R(0)U-1 +- U-1R<I,LT",US(0)UU-lR(0,U"1 

= U-lRa)U-1 

K p(O)R(0)g(l) p(0)R(l)g(0) p(l)R(0)g(0) _ g(0)R(0)p(l) _j_g<°>R(I)p(0) _j_ g(l)R(0)p(0) 

R(0)S(0)Rm +R(0)S(1>R(0) +R(1)S(0)R<0) = R(1) 

K p(0)R(0,§(.) _j_ p(0)R(l) p(l)R(0) _ R(0)p(l) ^.R^lpf0 '  -t- g(l)R(0)p(0) 

R(0)R(l) -t-R<0,S<l)R<0) + R(,,R,0) =R(1) 

Since S<0} =1. 

D.4) The (1,1) projection: 
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R,R'VR, +RlR(0)S0)R<0)R1 +RlR(l)R(0,R1 =R,R(1,R1 

= >  R j R ' ^ R ,  + R t S ( l , R ,  +  R R R .  =  R ^  

Rii '+ S'i  V+RiV=  R'IV 

RiV'-siV 

The (1,2) projection: 

R,R(0,Ru,R2 +R1R<u,S(,,R<0,R2 +R1R(,,R(0,R2 = R R R, 

=> Rj2 + R,S<1)R<0) - R1Sn,R(0,R<0) + R1R(l,R(0) - RlR<l,R(0)R(0' = R£ 

R(,V + R,S'"R<"' - R,S'"R"" + RlR(l)R(0) - R,R(l)R(U) = R(,l) 

R(t) __ p(t) 
12 **12 

The (2,2) projection: 

R2R(U,R(,,R2 + R2R(U)S(1)R<0)R2 + R2R(l)R(0,R2 = R2R(,)R2 

=> R2R(1,,R<1,R2 = R£ 

=> R<0)RU) - R<l"R(0'R<" - RlO)Rd)R(O) + r«0r((1>r(I)r(0> _ RU) 

=> R,0,R(" - R(l"R,,) - R(0)R(1>R<0) + R<0>R<1>R<°> = R»> 

=> 0 = R£ 

D.5) Start with Eq. (3.62a) and the (1,2) projection: 

R1F<0,R<0,S(,)R2 + R,F(0)R(1)R2 + R1F(l)R(0,R2 = RlR(0)F<l)R2 + RtR(,)F<0)R2 + R,S<l,R(0,F<0,R2 

=> F(0,R1R(0)S<1,R2 + F(0,R,R(l)R2 = R,F<l)R2 + R,R(l)R2F(l,) + R,S(1,R<0,R2F<0) 

=> F(0,R,S(1,R2 + F(0,R(
l2 = F," + R(

12F<") 

=> F<0>S(
ty + F(0,R(

12 = F£ + R(
12F(0> 

=> F<0,R(
1^ - R(

12F(0> = F^ - F<"% 

=> F(0,x-xF(0)=F^)-F(0,S<
l
l
2
> 

D.6) 

This equation can be solved by expanding x in the space of orthonormal coefficients, 

T: 
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* = £ X A,c,c; (3.67) 
/ I 

where c, is the Ith (occupied) column of T, and c, the fh unoccupied column of T, 

since we are dealing with the occupied/unoccupied (1,2) projection. Then 

Fu,,x - xF(U) = - F(U)S(,V 
occ unotx occ unocc 

=> F""! I A„c,C; - £ £ 
'  I  ' I  

ikv unocc _ _ 
":<11 11 A„(F«»C,C; -C,C;F,OI)=F;;'-F(",S™ 

/ 

UCl* MIUkfL* 
I l A „(e,c,c;-c,c;c,)=^'-F»'s™ 

/ / 

tH.T UKUtr 
I ~ *12 1 ' 

/ I 

where we have used F<l,,c, = e,c, and its adjoint. Then, to find A„, we multiply on left 

and right by specific column vectors, c* and cL, resp.: 

ikc unocc 

XI *«('• =£;(f!? 

occ unocc 

X X A,(*.-<M =£i(Fîi' -F""S',;K 

c^FIJ'-F'-'S™^ 

/ z 

^KL — '  
(^K ~ei) 

which can be substituted back into the original expansion: 

x=ÎÏA„c,c;=îlM^^à i i i ;  
i l  i l  { e t ~ e i )  
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D.7) 
occ unocc 

X = xx / x C,C 
I I 

« 5,KC;(F(1) - F(0)Sw)cL5L, _ „ 

R "" 

_ £ y ck(f("-^s(")cl. ., 

since F<0)Cg = eKcr
K. 

D.8) If the imaginary parts of F(1> and S(1) are explicitly pulled out, we have 

Rm = RiV + R'V + RV,1 + R£> = -S',',1 + x + x' = -iS\\0) + ix + (zx)' 

^„mxLc^(F ( V 0 ,-eKS"-0 ,)cL  ^um5 ,c;(F ( ,- l ) ,-eKS ( ' '0 ,)cL  

= -iS«V0 )  +/£ £ ( e  - e )  k V l  ^  
K L h-»t) c < c '  

K L ieK ~£L) (eK~eL) 

Cl(f<u,) -eKS(U,,)cK is a scalar... 

~iR S R +,£X j—j 

-g.s"-°')cLcKci -t,s"-w)c1ctc; 

^ (eK —fft) (^K — ^l) 

ULL 

= -z"R(0)S(l-0,R(0> + z£ £ 

= -zR'"'S^ "'R'") + z£ X ̂ -7 —^—(cKc^-cLc;) 
K T (eK -e L )  V K/ 
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APPENDIX E. McMURCHIE-DAVIDSON ONE- AND TWO-
ELECTRON INTEGRALS 

E.l) We can show in general that Eq. (3.79) holds by staring with the result and 

substituting in the definition for the Hermite polynomials: 

e * le 5 

(E)-'®'"' •©['•""''(s)*"']'"" 

since for a general function of two variables, 

*-(! Mf)/" 
then let £ be constant, and divide by da: 

o=(ll(l),+(*M*1 =(I)S), —{s)( 
then since ç = £(.r - a), j =1, and we have 
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(iJH<®eîi=(-4(-i),elJï)Vsts! 
ay 

Specifically, for £ = Ç(x - Pt) = a^xp, this implies that 

=> afH1(afxP)e-a" i  arx~p — g~ai>xi> 

(E.1.1) 

which was to be demonstrated. Note that for the simpler case where £ = £(.r), we 

simply require 

[ p i  
1 
c 

-«(DV»'. 

lis)'--

e~* 

(E.1.2) 

= (-l)'(-l)'e* 

E.2) The recursion relation for Hermite polynomials is 

and, using Eq. (3.79), substitute in a'^Xp or each term in Eq. (E.2.1): 

(E.2.1) 
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a l
p

/2xpHN(a'p
/2xp) = X N A  P",V 

N-l 

aP-

NH„_,(<*'ppXr) = ̂ frL 
«p2  

2a,2 

to make Eq. (E.2.1) 

xp\N _ NAiV_t Am>1 
N-l — N-l ^ NM 

dtp2  orp
2  2ap

z 

xp\s — NAn_, + \v>l 
2ap 

(x.,-P%) a„=na.,.,+^l 

^A^NA^.+PÂJAN+^i. 

where we have used 

X P = X a- P A x= X a~(Px - Ax)  =  X - Ax- Px + Ax = X -Px 

E.3) Consider 

n>n 
.r".Yy = ^ Av, and by application of this, 

N=0 

= £ <' *An (E.3.1) 
N=0 

which can also be written as 

<'4 = È<*AAn (E.3.2) 
N=0 
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Using this and Eq. (3.80), we have 

*r'4 = 14 
N = 0  

NAiV_i + PAIAiV +• 
2a p / 

= X<NA„_, + X<PA,A,V  + nn "N-t-1 
N 

N=0 2ap 

MrH + t  
NsO 

M f - M - I  n > n  H r K t l  A  

= £ <„(n+I)A,,+5;<p a>" +1^ 
N=-l .V=0 N = t  Zttp 

M+n + l  
= C(0)A„, + X <.,(N + 1)A„ -C,.,(« + " + 1)A„,-C„-,2(«+K + 2)A„.„. ,  

,v=o 
n>fî >t _ _ A A 

+ I <PA,A.v-C"i.,PA,A„,„-„,+ £ 
N = 0  ;V=0 2a„ 2aB 

then from Eq. (E.3.2), d™ = 0 unless 0 > N >(n + n), such that 

n+n + l  rt rn *• I ft *-n +1 

*"a"4 = X <,(N + 1)A„ + 2 <PA,A|V + X 
,v=o .V-0 iV=0 

m+n +1 [~ 

= s k. 
N-Q L 

( jV-rl)+CPA,+ 
2aP 

then, using Eq. (E.3.1), 

t t - h r t  +  1  n+n + \ 

.rr'4 = x . x 
N =0 N=0 

dZW+V+di ",pA'+ir]A« 

such that we can easily identify the recursion relation 

c-"=c,(N+i)+4rPA,+ c, 
2a„ 

E.4) Very quickly, but included for completeness: 



www.manaraa.com

169 

< PA = <t>A ^ 4 y LB^e'aeri 

= *Aîtâ 
èxî ^a,-=.w^*=;n 

dx 
2-e-a*rf +.tg 

dx 

d(-4 + + z°-)^ 
nx"B' le'a^ +xle'a"ri  (-«„) 

dx 

=  * * t â ( n 4 " " 2 a B x ' B " e - " i )  

= {nx\xl-'-2a,x"Axl-yJsz"Az^"''i-"-'i] 

E.5) For the dipole moment expectation value: 

rt+it tt-i mti« 

•V =0 L=0 M=0 

+ PCXAN + ̂ -
n+n />/ mt-nt _ / 

=£ .«IIK eto i 'HN Av. l  N=0L = 0M = 0 V 

(— "\n*n /•/ m+jn _ f * ^ 

^ i i i  nan- ,+PC„AN  
UP JN=0L = 0M=0 V / 

,-OpJ p 

f \'/2 
K (tr Viiî '*•' m*m I 

— i i iN5„.,.0 
APJN=0L=0M=0 I 

(— X3/2 rt+ff i+Z m+iff r ff 1 
r- 111 ««a,. n5lv„,0 + pca, +-f^ 
"P/ .V=0L=0M=0 L ^ P J 

=£a/-t-1 +%.,] 
\ AP J .v=0 

•Mtr-fcter 

the last line is true since N cannot be less than zero by virtue of its definition in Eq. 

(3.81) and in its relation to the Hermite polynomials. 

E.6) The second moments can be evaluated by inspection if we note that 
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*CK-A,,) = NXcAn_, + PC,xc A,v 
2 aD 

N ( N - 1 ) An_2+ N P C xAn_,+2£I 
p / 

PCiNAn„1+PCx AN + PCA 
2a H 

+ <N-"A. -  P C  

2a„ 2a 

= N(N -  1)AV_2  + 2NPCX\ + 
(N + l) 

2a„ 
PC 

Av + Av + 
. " P  .  A'v"+ïSf 

and when taking the integral, for reasons outlined in (E.5), any terms with lambda 

indexed greater than zero will vanish, such that 

.tc.tc AN — N (N — l)Av ,2 + 2 N PCX Av_, + — K PCx + •*[ 
N 

2 aD 

(N + l) 
2 aB 

25„.: +2PCA, +[pc/ +^k.„ 

then the equation analogous to dipole integral is 

, / jm Xnt-fi l+I m+m _ [~ (" -i ~| 

1 à' 0,40s =Ejf- III <4'/rXA.o 25.V.2 + 2PCA, + PC/+-i-k,„ 
\ aP /N=OL=0M=0 L ^"pj 

f , Y» ! 
= M;r 

\aP J N=0 

2 + 2PCxSNl + 
p c- ! +àh-

with a similar procedure for .rcyc,yczc, yc/ etc. 

E.7) Our task is to show that 

jdrrc'e-"^ 

To see this, transform to spheroidal coordinates126,127 where 
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CP, .  x  C P . .  ,  
; rp 

1 7^:3 dr = -CP (A2 -pr)dXd/jd0 ; 1< À <« , -!</*<!, 0 < 0 < 2tt 

jdrr;'e-"' = £ j' j"- f) =^~-e"' < 

= ( A + a "  " *  

CP",. . -Op ——I*»/') 

CP" -tip ——(Àt-/j)* 

Then let 

Ç = X + fj. 

d$ = dn 

£ d n { l  +  f j )  
Of ——fk.+\ 

CP* =: 

-D« «pCP-J 

CP" =. 

* f l  t /  -cp~-s" 

ttpCP 

apCP~ 

rp' , rp* -Œp —7~(À-I)" -Op —^—(A+l)* 
? 4  - t ?  4  

such that 

=  — f < t t  
aP 

Jt 

apCP~ 

CP',. 

-dp-——(À-I)* -TIP—-—(À+I )" 
e 4 -e 4 

CP* -<%;*—-—(Â-1)* -dp—-—(À+-1) 
4 -e 4 

Then let 

.2 _ (A +1)' u~ = 

„2=tizll! 
4 

such that 

du = 

dv = —rfÀ 
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j d r r c - ' e - " " '  =  ̂ [ j > ' - j ^ d u e  

= — ('du 
a„ J° 

Q.E.D. 

E.8) The recursion relations for RNLM can be shown by considering the general 

definition: 

-Ml 

where T = a(a2 +b~ +c2) .  Then using the general relation of the derivatives of the 

Hermite polynomials, Eq. (E.1.2), we have 

Hs{a l f2ua)e~a"~''' 

= (-2a),£- x|-^-a,/2u6j HL(al/2ub)e'cm'b' 

x|-^aI/2«cj Hvt(a1/2Mc)e'aa"c"rfM 

tr^-a^it)* HN(a l /2ua)e'au'"' 

= (-2a)' jQ • x (-a,/2u)LHL(al/2ub)e~au'b' 

x (-aI/2u)M Hm (a^u^e""^' du 

= (-al/2)N*L*M (~2a)' Çous*L+M+2' HN(ai/2ua)HL(al/2ub)HM(at,2uc)e~Tu~du 

From here, we consider R0.o>m., : 
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ROAM*.., ={~a]r-)M^\-2a)' j^u2' HM(aip-uc)e-Tu2 du 

then using the recurrence formula 4A/V(£) = /V//v_,(£) + ^-//iV+l(^), we can write 

Ro.o.m>,., =(-«'/2)M"(-2of),{0
1«iV,+u2/Hvl+1(a1/2Mc)e-T":dii 

= (-al/2)'V,tI(-2a)/cJo
1uM>2<'2'2al/2HM(of,/2Mc)e"T""rfi< 

-(-aI/2yVI,1(-2a),2MjoIM'vl+1+2/HM_t(o£1/2«c)e"T""di< 

= (-aI/2)'vl (-2a)(-2a); c £ uM*2*2'Hm (ai,2uc)e' Tu'du 

- (-a1/2 )M ' (-aI/2 )"(-2a); 2Af£ iim *u2'HV!_, (ay2uc)e ~Tu'du 

= c(-a1/2 )M (~2a)n 1 £ uM*2*2' H M(cc]/2uc)e~Ttt~ du 

+ M(-al/2)M '(-2a)/+lJo
li/vlflf2'Hv1.,(aI/2i/c)e_r""rfi/ 

similarly, 

=(-«,/2)L"V!"l(-2a)/£iiL+l+M+2/HL,1(a,/2ufc)HM(a,/2Mc)e-T"'dM 

= (-al/2)L>Vf+l(-2a),^£MLl'M+2>2,2al/2HL(al/2i<b)HiVl(a1/2Mc)e"T"*rfM 

-(-aI/2)L^M+l(-2a)/2L£MLtM+,+2/HL_l(aI/2«fe)HM(aI/2iicyru"rfu 

= (-a'/2)L*M(-2a)(-2aybf\iL*M*2*2'HL(a,/2ub)HM(av2uc)e~T"'du 

-(-al/2)L'M 1(-aI/2)'(-2a)/2L£i/L,'M+l+2/HL_l(al/2Mfc)HM(aV2Mc)e"ru*^z/ 

= 6(-aV2)L+M(-2a)y+l£ML>'vl,'2+2'HL(al/2M6)HM(al/2Mc)e"Tu*dM 

+ L(-al/2)L>M l(-2a)/+1£wM+l+2'HL_l(aI/2Mf;)HM(aI/2Mc)e"r""rfM 
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and now that the method has been established, by an exactly analogous procedure, 

the final relation is obtained: 

R-S + l .L.M.I ~ L.M.I ft + NRN_lfL.M.i+l 
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APPENDIX F. SUPPLEMENTAL TABLES FOR MRGn THEORY 

Table (F.l) MR(QD)-G2(MP2,SVP) heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR(QD)-G2(MP2.SVP) values/ 

Species Species Species 
Heats of LiH 30.0 (+ 3.3) PH, 3.0 (-1.7) F, 0.3 (-0.3) 
Formation BeH 84.7 (- 3.0) H,S - 5.1 (+ 0.2) co2 - 97.6 (+ 3.5) 

CH 141.5 (+ 1.0) HCI -23.2 (+1.1) Na2 29.1 (+4.9) 
CH2'S, 94.7 (- 1.0) U2 47.1 (+4.5) Si, 141.4 (-1.5) 
CH2 'A, 100.6 (+ 2.2) LiF - 79.8 (- 0.3) Pz 34.8 (- 0.5) 
CH, 34.2 (+0.8) CZH, 54.4 (- 0.2) s2 32.8 (-2.1) 
CH4 - 20.2 (+ 2.3) CJH, 14.8 (-2.3) Cl2 1.5 (-1.5) 
NH 85.4 (- 0.2) CN 106.3 (-1.4) NaCI - 49.4 (+ 5.8) 
NH2 44.2 (+0.9) HCN 31.7 (-0.2) SiO -22.5 (-2.1) 
NH, -9.5 (-1.5) CO - 28.7 (+ 2.3) cs 64.4 (+ 2.5) 
OH 8.4 (+ 1.0) HCO 9.0 (+1.0) so 3.4 (- 2.2) 
H2O - 58.0 (+ 0.2) HCHO -24.2 (-1.8) CIO 26.3 (-2.1) 
HF - 65.8 (+ 0.7) CH,OH -48.9 (+0.9) CIF -12.2 (-1.0) 
SiH, 'A ,  62.9 (+ 2.3) N2 -1.1 (+1.1) CH,CI -19.6 (+ 0.0) 
SiH2 '8, 87.5 (- 1.3) N2H, 22.8 (+ 0.0) CH,SH -8.0 (+ 2.5) 
SiH, 48.4 (- 0.5) NO 20.1 (+1.5) HOCI - 17.9 (+0.1) 
SiH, 7.8 (+ 0.2) o2 1.0 (-1.0) SO, -66.5 (- 4.5) 
PH2 33.3 (- 0.4) H2O2 - 33.2 (+ 0.7) 

Ionization U 123.2 (+ 1.1) CI 296.4 (+ 2.7) HCI 293.4 (+ 0.6) 
Energies Be 219.6 (- 4.7) CH, 293.0 (- 2.0) C2H2 264.2 (-1.3) 

B 189.1 (+ 2.3) NH, 233.0 (+1.8) C2H. 241.1 (+ 1.2) 
C 257.9 (+ 1.8) OH 300.3 (- 0.3) CO 324.1 (-1.0) 
N 334.0 (+1.3) OH2 291.3 (-0.3) N2

j-„ 359.1 (+0.2) 
O 313.4 (+ 0.4) HF 371.0 (-1.1) N2 

j.u 384.3 (+ 0.8) 
F 402.6 (- 0.9) SiH, 252.7 (+1.0) o2 279.9 (-1.6) 
Na 114.1 (+4.4) PH 233.4 (+0.7) P2 243.3 (-0.5) 
Mg 179.0 (-2.7) PH2 224.8 (+1.6) s2 213.2 (+ 2.6) 
AI 137.1 (+0.9) PH, 228.6 (-1.0) Cl2 265.0 (+ 0.2) 
Si 187.0 (+ 0.9) SH 237.9 (+1.2) CIF 291.6 (+0.3) 
P 241.4 (+ 0.5) HZS'B, 240.3 (+1.1) CS 263.2 (-1.9) 
S 235.0 (+ 3.9) HZS'A, 293.9 (+0.8) 

Electron c 29.0 (+0.1) CH, - 2.1 (+ 3.9) SH 53.2 (+1.2) 
Affinities o 33.8 (-0.1) NH 8.1 (+0.7) o2 11.7 (-1.6) 

F 81.2 (-2.8) NH2 17.4 (+ 0.4) NO -0.3 (+ 0.8) 
Si 32.2 (- 0.3) OH 42.9 (- 0.7) CN 91.7 (-2.7) 
p 14.7 (+2.5) SiH 27.9 (+1.5) PO 25.1 (+0.0) 
s 46.6 (+ 1.3) SiH2 22.7 (+ 3.2) SJ 37.7 (+0.6) 
Cl 84.0 (- 0.6) SiH, 33.3 (-0.8) Cl2 55.4 (- 0.3) 
CH 25.3 (+ 3.3) PH 21.9 (+1.9) 
CH2 15.8 (-0.8) PHJ 28.6 (+ 0.7) 

Proton NH, 205.2 (- 2.7) SiH, 153.8 (+0.2) HCI 133.2 (+0.4) 
Affinities HJO 160.5 (+ 4.6) PH, 184.9 (+ 2.2) 

CjHJ 154.6 (-2.3) H,S 167.7 (+1.1) 

J Va lues in kcal mol*1. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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Table (F.2) MR(QD)-G2(MP2) heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR(QD)-G2(MP2) values/ 

Species Species Species 
Heats of LiH 30.4 (+ 2.9) PH, 1.7 (-0.4) F, 1.4 (-1.4) 
Formation BeH 83.0 (- 1.3) H,S -5.2 (+0.3) CO, -95.4 (+1.3) 

CH 141.3 (+ 1.2) HCI -23.1 (+1.0) Na, 29.6 (+4.4) 
CH, 38, 94.4 (- 0.7) Li, 47.7 (+ 3.9) Si, 142.7 (-2.8) 
CH, Vt, 99.9 (+ 2.9) LiF -81.3 (+1.2) P2 36.5 (- 2.2) 
CH, 33.6 (+1.4) CJH, 55.9 (-1.7) S2 33.6 (- 2.9) 
CH, -21.2 (+ 3.3) C,H, 11.0 (+1.5) CI, 2.2 (-2.2) 
NH 85.5 (- 0.3) CN 107.9 (- 3.0) NaCI -48.7 (+5.1) 
NH, 44.0 (+1.1) HCN 33.2 (-1.7) SiO -22.0 (-2.6) 
NH, -10.1 (-0.9) CO -27.8 (+1.4) CS 65.8 (+1.1) 
OH 8.6 (+ 0.8) HCO 10.0 (+ 0.0) SO 4.1 (-2.6) 
H,0 - 58.1 (+ 0.3) HCHO - 23.8 (- 2.2) CIO 26.9 (- 2.9) 
HF -65.2 (+0.1) CH,OH -49.3 (+1.3) CIF -11.2 (-2.7) 
SiH, 'A ,  61.6 (+ 3.6) N, 0.5 (-0.5) CH,CI -19.4 (-2.0) 
SiH, 3S, 86.2 (+ 0.0) N,H, 22.7 (+ 0.1) CH,SH - 8.8 (+ 3.3) 
SiH, 46.2 (+1.7) NO 21.2 (+0.4) HOCI -17.2 (-0.6) 
SiH, 4.2 (+ 4.0) o, 1.5 (- 1.5) SO, - 64.6 (- 6.4) 
PH, 32.7 (+ 0.4) H,0, -32.5 (+0.0) 

Ionization Li 123.4 (+ 0.9) CI 295.5 (+ 3.6) HCI 292.6 (+ 1.4) 
energies Be 219.1 (-4.2) CH, 293.3 (- 2.3) C,H, 263.3 (-0.4) 

B 190.1 (+ 1.3) NH, 232.8 (+ 2.0) C,H, 245.7 (- 3.4) 
C 258.4 (+ 1.3) OH 299.6 (+0.4) CO 324.1 (-1.0) 
N 334.0 (+1.3) OH, 291.0 (+0.0) N,2-„ 358.4 (+ 0.9) 
O 312.7 (+1.1) HF 370.3 (- 0.4) N2 ̂  383.9 (+ 1.2) 
F 401.6 (+0.1) SiH, 253.6 (+0.1) O, 279.5 (-1.2) 
Na 114.1 (+4.4) PH 233.3 (+0.8) P, 242.6 (+ 0.2) 
Mg 178.3 (- 2.0) PH, 224.5 (+1.9) s, 213.0 (+2.8) 
AI 137.1 (+0.9) PH, 228.3 (-0.7) CI, 264.2 (+1.0) 
Si 187.0 (+ 0.9) SH 237.3 (+1.8) CIF 290.7 (+ 1.2) 
P 241.2 (+ 0.7) H,S 2e, 239.8 (+1.6) CS 263.0 (-1.7) 
s 234.0 (+ 4.9) H,S 2A,  294.5 (+0.2) 

Electron C 29.0 (+0.1) CH, - 2.1 (+ 3.9) SH 52.3 (+ 2.1) 
affinities o 32.8 (+0.9) NH 7.4 (+1.4) o, 10.6 (-0.5) 

F 79.6 (-1.2) NH, 17.0 (+ 0.8) NO -0.7 (+1.2) 
Si 32.4 (- 0.5) OH 42.1 (+0.1) CN 91.6 (-2.6) 
p 15.5 (+1.7) SiH 28.0 (+1.4) PO 24.8 (+0.3) 
s 45.7 (+ 2.2) SiH, 22.7 (+ 3.2) Sz 36.7 (+1.6) 
CI 82.9 (+0.5) SiH, 33.0 (-0.5) CI, 59.1 (- 4.0) 
CH 25.0 (+ 3.6) PH 21.3 (+2.5) 
CH, 15.9 (-0.9) PH, 27.8 (+1.5) 

Proton NH, 205.7 (- 3.2) SiH, 153.9 (+0.1) HCI 133.8 (-0.2) 
affinities H,0 161.1 (+0.5) PH, 186.3 (+0.8) 

C?HJ 153.7 (-1.4) H,S 168.5 (+0.3) 

JValues in kcal mol"1. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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Table (F.3) MR(QD)-G3(MP2) heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR-G3(MP2) values/ 

Species Species Species 
Heals of LiH 30.3 (+ 3.0) PH, 4.0 (- 2.7) F, -2.1 (+2.1) 
Formation BeH 83.6 (-1.9) H2S -4.8 (- 0.1) CO, -96.0 (+ 1.9) 

CH 141.1 (+ 1.4) HCI -23.3 (+1.2) Na, 29.3 (* 4.7) 
CH2 

3B, 93.7 (+0.0) Li, 47.4 (+ 4.2) Si, 140.0 (-0.1) 
CH, 'A, 101.3 (+ 1.5) LiF -79.8 (-0.3) P2 35.3 (-1.0) 
CH, 34.2 (+ 0.8) C,H, 54.1 (+0.1) S, 31.3 (-0.6) 
CH, -19.2 (+1.3) C,H, 15.7 (-3.2) Cl2 0.0 (+ 0.0) 
NH 84.4 (+ 0.8) CN 106.8 (-1.9) NaCI - 50.0 (+ 6.4) 
NH, 44.3 (+0.8) HCN 32.7 (-1.2) SiO -23.8 (-0.8) 
NH, -8.5 (- 2.5) CO -27.5 (+1.1) CS 64.8 (+2.1) 
OH 7.6 (+1.8) HCO 9.6 (+0.4) SO 1.7 (-0.5) 
H,0 - 57.8 (+ 0.0) HCHO - 23.0 (- 3.0) CIO 25.3 (-1.1) 
HF - 66.0 (+ 0.9) CH,OH -47.8 (-0.2) CIF -12.6 (-0.6) 
SiH, 'A, 63.2 (+ 2.0) N, 0.0 (+ 0.0) CH,CI -20.6 (+1.0) 
SiH, 3B, 86.2 (+ 0.0) N,H, 24.7 (-1.9) CH,SH -6.9 (+ 1.4) 
SiH, 47.9 (+ 0.0) NO 20.6 (+1.0) HOCI -18.1 (+0.3) 
SiH, 8.0 (+ 0.2) O, - 0.4 (+ 0.4) so2 - 67.0 (- 4.0) 
PH, 33.1 (+0.0) H,0, -33.3 (+0.8) 

Ionization Li 124.2 (+0.1) CI 296.8 (+ 2.3) HCI 293.7 (+ 0.3) 
energies Be 219.7 (-4.8) CH, 293.1 (-2.1) C,H2 264.9 (- 2.0) 

B 189.9 (+ 1.5) NH, 232.6 (+ 2.2) C2H. 241.1 (+ 1.2) 
C 258.6 (+ 1.1) OH 299.8 (+0.2) CO 324.4 (-1.3) 
N 334.4 (+ 0.9) H,0 291.0 (+ 0.0) N, % 359.1 (+0.2) 
O 313.1 (+0.7) HF 370.5 (-0.6) N2 

2.u 385.2 (-0.1) 
F 401.8 (-0.1) SiH, 254.6 (- 0.9) o2 281.2 (-2.9) 
Na 115.1 (+ 3.4) PH 235.4 (-1.3) P2 243.7 (-0.9) 
Mg 179.1 (- 2.8) PH, 226.9 (- 0.5) S2 215.3 (+0.5) 
AI 138.4 (- 0.4) PH, 229.0 (-1.4) CL2 265.8 (-0.6) 
Si 188.1 (-0.2) SH 238.6 (+0.5) CIF 292.0 (-0.1) 
P 241.8 (+ 0.1) H,S jB, 241.1 (+0.3) CS 263.3 (- 2.0) 
S 236.3 (+ 2.6) H,S2A, 294.4 (+0.3) 

Electron C 28.6 (+0.5) CH, - 2.9 (+ 4.7) SH 54.0 (+0.4) 
affinities O 31.8 (+1.9) NH 6.6 (+ 2.2) o2 10.9 (-0.8) 

F 78.6 (- 0.2) NH, 16.5 (+1.3) NO 0.5 (+ 0.0) 
Si 33.2 (-1.3) OH 41.3 (+0.9) CN 91.5 (-2.5) 
P 16.2 (+ 1.0) SiH 30.0 (-0.6) PO 27.0 (-1.9) 
S 47.6 (+ 0.3) SiH, 24.9 (+1.0) S, 38.9 (- 0.6) 
CI 83.6 (- 0.2) SiH, 33.8 (-1.3) CL2 57.9 (- 2.8) 
CH 27.9 (+ 0.7) PH 23.0 (+0.8) 
CH, 14.8 (+0.2) PH, 29.5 (- 0.2) 

Proton NH, 205.7 (- 3.2) SiH, 153.6 (+0.4) HCI 132.7 (+0.9) 
affinities H,0 160.7 (+ 4.4) PH, 184.5 (+ 2.6) 

C,H, 153.6 (-1.3) H2S 167.1 (+1.7) 

•"Values in kcal mol '. The heats of formation are 298 K values whereas the 

remaining quantities refer to 0 K. 
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Table (F.4) MR(QD)-G2 / MP2a heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR(QD)-G2/MP2 values.1* 

Species Species Species 
Heats of LiH 29.6 (+ 3.7) PH, 6.0 (- 4.7) F, -3.1 (+ 3.1) 
Formation BeH 86.1 (-4.4) H,S -2.8 (-2.1) CO, - 105.0 (+10.9) 

CH 142.5 (+ 0.0) HCI - 22.4 (+ 0.3) Na, 28.6 (+ 5.4) 
CH, '8, 94.5 (-0.8) Li, 46.7 (+ 4.9) Si, 138.1 (+ 1.8) 
CH, 'A, 102.8 (+ 0.0) LiF -81.2 (+1.1) Pz 34.4 (-0.1) 
CH, 35.6 (-0.6) C,H, 53.4 (+ 0.8) S, 28.6 (+21) 
CH, -17.6 (-0.3) C,H, 12.1 (+0.4) CI, 0.6 (-0.6) 
NH 85.5 (-0.3) CN 104.0 (+ 0.9) NaCI -50.7 (+7.1) 
NH, 44.8 (+0.3) HCN 31.2 (+0.3) SiO -18.2 (-6.4) 
NH, - 7.3 (- 3.7) CO - 27.1 (+ 0.7) CS 64.5 (+ 2.4) 
OH 7.4 (+ 2.0) HCO 9.5 (+0.5) SO -2.8 (+ 4.0) 
H,0 - 58.4 (+ 0.6) HCHO - 24.4 (- 1.6) CIO 23.3 (+0.9) 
HF - 68.3 (+ 3.2) CH,OH - 45.8 (- 2.2) CIF - 14.0 (+0.8) 
SiH, 'A, 64.5 (+0.7) N, - 0.3 (+ 0.3) CH,CI -18.8 (-0.8) 
SiH, 3B, 87.4 (-1.2) N,H, 25.1 (-2.3) CH,SH -6.5 (+ 1.0) 
SiH, 49.7 (-1.8) NO 18.2 (+ 3.4) HOCI - 19.0 (+1.2) 
SiH, 10.1 (-1.9) o, -6.1 (+6.1) SO, - 78.5 (+ 7.5) 
PH, 34.8 (-1.7) H,0, - 36.4 (+ 3.9) 

Ionization Li 123.2 (+1.1) CI 295.8 (+ 3.3) HCI 292.7 (+1.3) 
energies Be 219.9 (- 5.0) CH, 291.1 (-0.1) C,H, 263.5 (-0.6) 

B 186.6 (+ 4.8) NH, 230.6 (+ 4.2) C,H, 244.4 (-2.1) 
C 256.2 (+ 3.5) OH 299.8 (+ 0.2) CO 319.1 (+ 4.0) 
N 334.0 (+1.3) H,0 290.6 (+ 0.4) N, 2", 355.4 (+ 3.9) 
O 312.4 (+1.4) HF 372.4 (- 2.5) N, 2.„ 384.1 (+ 1.0) 
F 403.0 (- 1.3) SiH, 250.7 (+ 3.0) O, 283.8 (- 5.5) 
Na 114.1 (+4.4) PH 233.6 (+ 0.5) P, 243.4 (-0.6) 
Mg 179.1 (-28) PH, 224.5 (+ 1.9) s. 215.5 (+0.3) 
AI 134.2 (+ 3.8) PH, 226.4 (+1.2) CI, 263.3 (+1.9) 
Si 185.4 (+ 2.5) SH 236.3 (+ 2.8) CIF 290.0 (+1.9) 
P 241.5 (+ 0.4) H,S 28, 238.1 (+ 3.3) CS 260.4 (+ 0.9) 
s 234.1 (+ 4.8) H,S 2A, 293.6 (+1.1) 

Electron c 28.8 (+0.3) CH, - 4.6 (+ 6.4) SH 52.3 (+21) 
affinities o 34.5 (- 0.8) NH 7.2 (+1.6) O, 11.4 (-1.3) 

F 83.7 (- 5.3) NH, 16.4 (+ 1.4) NO 4.2 (- 3.7) 
Si 31.7 (+0.2) OH 44.4 (- 2.2) CN 88.5 (+0.5) 
p 13.8 (+3.4) SiH 27.4 (* 2.0) PO 30.2 (-5.1) 
s 45.9 (+ 2.0) SiH, 21.9 (+ 4.0) s, 35.9 (+ 24) 
CI 84.2 (-0.8) SiH, 30.5 (+ 20) CI, 59.4 (-4.3) 
CH 25.2 (+3.4) PH 20.1 (+ 3.7) 
CH, 13.8 (+1.2) PH, 26.3 (+ 3.0) 

Proton NH, 206.5 (-4.0) SiH, 155.0 (-1.0) HCI 133.2 (+0.4) 
affinities H,0 159.6 (+ 5.5) PH, 185.6 (+1.5) 

C,H, 153.7 (-1.4) H,S 168.6 (+ 0.2) 

'Corresponding to MRQDPT2/6-311+G(3df,2p) + ZPVE + HLC. 



www.manaraa.com

179 

Table (F.5) MR(QD)-G3/MP2a heats of formation, ionization energies, electron 

affinities and proton affinities. Values in parentheses are the differences between 

experimental and MR(QD)-G3(MP2) / MP2 values.b 

Species Species Soecies 
Heats of LiH 29.3 (+ 4.0) PH, 5.6 (-4.3) F, -2.7 (+2.7) 
formation BeH 86.1 (- 4.4) HzS - 2.6 (- 2.3) CO, -102.4 (+8.3) 

CH 142.5 (+0.0) HCI -21.4 (-0.7) Na, 28.2 (+5.8) 
CH2 

3B, 94.4 (- 0.7) Li, 46.3 (+ 5.3) Si2 138.2 (+1.7) 
CH, 'A, 102.8 (+ 0.0) LiF -80.1 (+0.0) P, 34.2 (+0.1) 
CH, 35.3 (- 0.3) C2H2 52.5 (+1.7) s, 29.9 (+0.8) 
CH, - 17.9 (+0.0) C2H. 11.6 (+0.9) CI, 2.0 (-2.0) 
NH 85.4 (. 0.2) CN 104.9 (+0.0) NaCI - 50.1 (+ 6.5) 
NH2 44.8 (+0.3) HCN 31.5 (+0.0) SiO - 19.1 (-5.5) 
NH, - 7.5 (- 3.5) CO -25.4 (-1.0) CS 65.3 (+1.6) 
OH 7.7 (+ 1.7) HCO 11.1 (-1.1) so -1.8 (+ 3.0) 
H2O -58.2 (+0.4) HCHO - 23.3 (- 2.7) CIO 25.1 (-0.9) 
HF - 67.4 (+ 2.3) CH,OH - 45.4 (- 2.6) CIF -11.6 (-1.6) 
SiH, '4, 64.0 (+ 1.2) N2 0.0 (+0.0) CH,CI -19.4 (-0.2) 
SiH, 3B, 87.0 (- 0.8) NzH, 25.0 (- 2.2) CH,SH -6.1 (+0.6) 
SiH, 49.0 (-1.1) NO 19.7 (+ 1.9) HOCI -17.5 (-0.3) 
SiH, 9.0 (- 0.8) 02 - 4.8 (+ 4.8) so2 - 77.4 (+ 6.4) 
PH2 34.4 (-1.3) H,O, -36.1 (+3.6) 

Ionization Li 124.2 (+0.1) CI 297.3 (+ 1.8) HCI 294.2 (-0.2) 
energies Be 221.1 (-6.2) CH, 292.4 (-1.4) C,H, 265.2 (-2.3) 

B 187.4 (+ 4.0) NH, 231.3 (+ 3.5) C2H, 245.5 (- 3.2) 
C 256.9 (+ 2.8) OH 300.4 (- 0.4) CO 320.5 (+ 2.6) 
N 334.3 (+1.0) H2O 291.4 (-0.4) N, 2-„ 356.6 (+ 2.7) 
O 313.3 (+ 0.5) HF 373.0 (-3.1) N,L 386.1 (-1.0) 
F 403.41 (- 1.7) SiH, 253.7 (+0.0) 0, 284.5 (- 6.2) 
Na 115.1 (+ 3.4) PH 234.9 (-0.8) P2 244.9 (-2.1) 
Mg 180.3 (- 4.0) PH; 226.1 (+0.3) s, 217.0 (-1.2) 
AI 135.5 (+ 2.5) PH, 227.8 (- 0.2) CI, 265.2 (+0.0) 
Si 186.4 (+1.5) SH 238.1 (+1.0) CIF 291.4 (+ 0.5) 
P 241.9 (+ 0.0) HjS 2B, 240.0 (+1.4) CS 261.6 (-0.3) 
S 236.6 (+ 2.3) H2S 2A, 295.1 (- 0.4) 

Electron C 28.4 (+ 0.7) CH, -4.3 (+6.1) SH 54.2 (+0.2) 
affinities o 33.7 (+ 0.0) NH 6.8 (+ 2.0) 0, 11.7 (-1.6) 

F 82.4 (- 4.0) NH, 16.6 (+1.2) NO 4.5 (-4.0) 
Si 32.6 (-0.7) OH 43.9 (-1.7) CN 89.4 (-0.4) 
P 16.5 (+ 0.7) SiH 29.0 (+0.4) PO 31.5 (-6.4) 
S 48.1 (-0.2) SiH, 23.5 (+ 2.4) S, 38.1 (+0.2) 
CI 84.9 (-1.5) SiH, 32.1 (+0.4) CI, 61.3 (-6.2) 
CH 27.3 (+1.3) PH 22.2 (+1.6) 
CH2 13.8 (+1.2) PH, 28.3 (+1.0) 

Proton NH, 207.0 (-4.5) SiH, 154.8 (-0.8) HCI 132.7 (+0.9) 
affinities H2O 159.9 (+ 5.2) PH, 185.2 (+1.9) 

CAHJ 152.7 (-0.4) H,S 167.9 (+0.9) 

"Corresponding to MRQDPT2/G3MP21arge + DE(SO) + ZPVE + HLC 
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Table (F.6) MR-G2(MP2,SVP) total energies (in Hartrees). 

Soecies Enerqv Soecies Enerqv Soecies Enerqv 
H - 0.500 00 HCHO -114.348 23 SH* -397.912 90 
Li - 7.432 20 CH,OH - 115.545 13 H2S* (2B,) - 398.552 34 
Be -14.625 88 N, -109.407 36 H2S* (2A,) - 398.466 95 
B - 24.605 98 N,H, -111.692 74 HCI* - 459.877 47 
C -37.78916 NO -129.753 66 C,H,* -76.779 62 
N -54.524 18 o, -150.164 11 C,H,* -78.037 90 
O - 74.988 99 H,0, -151.379 98 CO* -112.673 22 
F - 99.640 51 F, -199.339 09 N," 2* g -108.835 29 
Na - 161.846 13 CO, -188.379 71 N,* -108.795 33 
Mg - 199.648 70 Na, - 323.726 40 O," -149.718 30 
Al -241.934 90 Si, - 577.993 78 P," -681.444 18 
Si - 288.937 81 P, -681.831 76 S," -795.136 07 
P - 340.824 19 S, - 795.475 72 Cl,* -919.027 11 
S - 397.659 19 Cl, -919.449 39 CIF - 558.950 66 
Cl - 459.679 98 NaCI -621.685 52 CS* - 435.303 27 
UH - 8.026 28 SiO - 364.226 92 c - 37.839 50 
BeH -15.196 86 CS - 435.722 28 0 -75.042 48 
CH -38.417 97 SO - 472.841 24 F -99.769 57 
CH, (3B,) - 39.073 59 CIO - 534.766 86 sr - 288.989 19 
CH, ('A,) -39.06417 CIF -559.415 30 p - 340.846 89 
CH, - 39.750 92 CH,CI - 499.563 47 s - 397.733 03 
CH, -40.41801 CH,SH -438.160 83 cr -459.813 68 
NH -55.148 92 HCIO - 535.418 06 CH - 38.461 58 
NH, - 55.795 68 SO, - 548.03 370 CH, -39.09916 
NH, -56.46215 Li* - 7.235 48 CH, -39.748 13 
OH - 75.651 39 Be' -14.276 33 NH -55.161 52 
H,0 - 76.338 36 B* - 24.304 50 NH, - 55.823 64 
HF - 100.356 82 C - 37.378 28 OH -75.719 70 
SiH - 289.550 43 N* - 53.991 70 SiH - 289.594 61 
SiH, ('A,) 
SiH, rs,) 

-290.171 34 O" -74.490 17 SiH, - 290.208 25 SiH, ('A,) 
SiH, rs,) -290.132 65 F - 98.999 31 SiH, - 290.829 22 
SiH, - 290.775 63 Na" -161.664 29 PH -341.468 95 
SiH, -291.421 16 Mg- -199.364 00 PH, - 342.099 84 
PH -341.433 82 Al" -241.716 31 SH - 398.376 60 
PH, - 342.054 09 si - 288.639 93 O, -150.181 77 
PH, - 342.683 34 p - 340.439 53 NO -129.752 14 
SH - 398.291 74 s' - 397.285 64 CN -92740 67 
H,S - 398.935 51 CI* -459.207 96 PO -416.071 52 
HCI - 460.344 70 CH," - 39.951 07 PO -416.032 54 
Li, - 14.909 19 NH," - 56.09081 s, - 795.535 41 
LiF - 107.290 44 OH* -75.173 22 CI, -919.535 28 
C,H, -77.197 56 H,0* - 75.874 29 NH,* -56.78949 
C,H, - 78.421 69 HF* -99.765 49 H,0* -76.59466 
CN -92.594 55 SiH," -291.01710 C,H," - 77.442 21 
HCN -93.295 32 PH* -341.062 45 SiH," -291.665 85 
CO -113.189 65 PH," -341.695 86 PH,* - 342.978 57 
HCO -113.710 29 PH," - 342.319 37 H,S* 

H,CI" 
- 399.202 65 
- 460.556 89 
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Table (F.7) MR-G2(MP2) total energies (in Hartrees). 

Soecies Enerqv Soecies Enerqv Soecies Enerqv 

H - 0.500 00 HCHO - 114.346 95 SH* -397.912 66 
Li - 7.432 20 CHjOH -115.544 73 H2S* (2e,) - 398.552 63 
Be - 14.624 16 N, - 109.403 75 H,S*(2A,) - 398.466 73 
B - 24.605 23 N,H, -111.691 97 HCI* - 459.876 26 
C - 37.787 70 NO -129.749 83 C,H,* -76.779 14 
N - 54.520 47 O, -150.160 02 CÎH,* - 78.039 21 
O -74.985 42 H,0, -151.376 57 CO* -112670 94 
F - 99.636 50 F, -199.333 45 N,*2-, -108.832 49 
Na -161.846 13 CO, - 188.374 35 N,* 2,„ -108.792 48 
Mg -199.646 80 Na, - 323.725 70 0,* - 149.714 90 
Al -241.934 37 Si, - 577.991 71 PZ -681.441 49 
Si - 288.936 96 P, -681.828 11 S,' -795.132 68 
P - 340.820 83 S, - 795.471 88 Cl,* -919.022 95 
S - 397.659 24 Cl, - 919.444 32 CIF* - 558.946 45 
Cl - 459.681 96 NaCI -621.682 75 CS* - 435.300 76 
LiH - 8.025 70 SiO - 364.224 54 C -37.840 15 
BeH -15.198 08 CS -435.719 74 O -75.03916 
CH -38.418 99 SO - 472.837 28 F -99.764 79 
CH, (3S,) - 39.074 81 CIO - 534.762 23 sr - 288.988 68 
CH, ('A,) -39.06605 CIF - 559.410 00 p - 340.845 62 
CH, - 39.752 74 CHjCI - 499.561 91 s - 397.730 58 
CH, -40.42011 CHjSH -438.156 67 Cl" -459.810 11 
NH -55.148 41 HCIO -535.413 86 CH" - 38.462 39 
NH, - 55.795 65 SO, - 548.026 81 CH, -39.100 44 
NH, - 56.462 45 u* - 7.235 48 CH, -39.749 95 
OH - 75.649 91 Be" -14.276 33 NH" -55.16013 
H,0 - 76.337 43 B* - 24.303 71 NH, -55.82300 
HF -100.354 39 C* -37.377 96 OH" -75.717 00 
SiH - 289.551 00 N* - 53.990 96 SiH" - 289.595 30 
SiH, ('At) -290.173 24 O* - 74.489 50 SiH, -290.210 05 
SiH, CBI) -290.134 51 F* - 98.998 62 SiH," - 290.832 25 
SiH, - 290.778 96 Na* -161.664 29 PH" -341.468 30 
SiH, -291.426 29 Mg* -199.364 00 PH," - 342.099 78 
PH -341.433 85 AI* -241.715 62 SH" - 398.374 61 
PH, - 342.055 01 Si* - 288.639 33 0, -150.176 18 
PH, - 342.685 36 P* - 340.439 10 NO - 129.747 77 
SH - 398.290 80 S* - 397.285 16 CN - 92737 89 
H2S - 398.935 22 CI* - 459.206 86 PO -416.067 52 
HCI -460.342 99 CH,* - 39.952 62 PO -416.029 07 
Li, -14.908 48 NH,* - 56.091 31 S, - 795.530 29 
UF -107.289 37 OH* -75.172 56 Cl," -919.528 69 
CjH, -77.196 60 H,0* - 75.873 78 NH,* -56.79014 
CjH, -78.429 07 HF~ - 99.764 34 H,0* - 76.594 07 
CN - 92.591 94 SiH,* -291.020 54 C,H,* - 77.441 85 
HCN - 93.293 03 PH* -341.062 67 SiH,* -291.670 80 
CO -113.187 40 PH,* -341.69710 PH,* - 342.982 18 
HCO -113.708 12 PH,* - 342.321 55 H,S* 

H,Cl* 
- 399.203 64 
- 460.556 22 
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Table (F.8 ) MR-G3(MP2) total energies (in Hartrees). 

Soecies Energy Soecies Energy Soecies Energy 

H - 0.501 53 HCHO -114.35818 SH* - 397.925 68 
Li - 7.433 72 CH,OH -115.558 24 H,S* (2S,) - 398.565 48 
Be - 14.627 80 N, -109.415 55 HJS* (2A,) - 398.480 35 
B - 24.609 04 N,H, -111.706 17 HCI* - 459.891 24 
C - 37.793 30 NO - 129.762 04 C,H,* - 76.787 35 
N - 54.529 00 O, -150.174 86 CJH,* - 78.051 19 
O - 74.993 59 H,O2 -151.392 40 CO* -112.679 23 
F - 99.644 67 F, - 199.350 53 N,*2-, - 108.843 24 
Na - 161.847 65 CO, - 188.390 27 N,* Z.„ - 108.803 31 
Mg -199.650 67 Na, - 323.729 31 O,* -149.727 24 
Al -241.939 01 Si, - 578.008 20 P2* -681.462 00 
Si - 288.944 21 Pa -681.850 43 S,* -795.157 90 
P -340.83385 S, - 795.500 69 Cl,* - 919.053 47 
S - 397.670 81 Cl, -919.477 28 CIF* - 558.967 20 
Cl - 459.693 08 NaCI -621.701 05 CS* -435.318 05 
LiH - 8.028 98 SiO - 364.239 94 C -37.84294 
BeH -15.201 72 CS -435.737 42 O - 75.044 19 
CH - 38.424 29 SO - 472.859 61 F -99.76996 
CH, (3S,) - 39.082 28 CIO - 534.785 51 Si" -288.997 13 
CH2 ('A,) - 39.070 54 CIF -559.432 60 P - 340.859 15 
CH, - 39.759 90 CH,CI - 499.583 95 S - 397.746 55 
CH, - 40.427 19 CH,SH -438.181 54 cr - 459.826 46 
NH -55.156 71 HCIO - 535.437 27 CH - 38.468 45 
NH2 - 55.803 52 SO, - 548.054 86 CH2 - 39.106 29 
NH, - 56.470 41 Li* - 7.235 84 CH, - 39.755 98 
OH - 75.658 46 Be* -14.277 86 NH -55.167 26 
H2O - 76.345 68 B* - 24.306 42 NH, - 55.830 14 
HF - 100.362 56 C* - 37.381 41 OH - 75.724 50 
SiH -289.559 19 N* - 53.995 99 SiH - 289.606 53 
SiH, ( 'At) - 290.180 70 O* - 74.494 98 SiH, - 290.220 91 
siH, c'a) -290.144 02 F* - 99.004 50 SiH, - 290.842 38 
SiH, - 290.787 68 Na* -161.664 29 PH -341.483 83 
SiH, -291.433 83 Mg* -199.365 53 PH, -342.114 71 
PH -341.446 76 Al* -241.718 32 SH - 398.392 29 
PH2 - 342.067 27 Si* - 288.644 77 O, -150.191 45 
PH, - 342.696 60 P* - 340.448 50 NO -129.761 61 
SH • 398.305 88 S* - 397.294 86 CN - 92748 68 
H,S - 398.949 83 Cl* - 459.220 24 PO -416.089 65 
HCI - 460.359 26 CH,* - 39.959 90 PO -416.047 96 
u, -14.912 01 NH,* - 56.099 53 s, - 795.562 43 
UF - 107.295 79 OH* - 75.180 98 Cl, -919.568 76 
CJHÎ - 77.208 54 H,0* - 75.881 95 NH,* -56.79861 
C,H, - 78.435 17 HF* -99.771 95 H,0* -76.602 44 
CN -92.602 78 SiH,* -291.028 82 C,H,* -77.45246 
HCN - 93.304 51 PH* -341.072 53 SiH,* -291.678 14 
CO -113.196 29 PH,* -341.705 94 PH,* - 342.991 18 
HCO - 113.719 40 PH,* - 342.331 82 H,S* -399.215 97 

H,Cl* - 460.570 69 
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Table (F.9) MR-G2/MRCI+Q total energies (in Hartrees)/ 

Soecies Enerqv Soecies Energy Soecies Enerqv 

H -0.500 00 HCHO -114.344 02 SH* -397.913 00 
U - 7.432 20 CH,OH - 115.539 41 H:S* (2a,) - 398.553 75 
Be -14.624 16 N: - 109.399 95 H:S*(2A,) - 398.469 06 
B -24.605 23 N,H, -111.686 51 HCI* -459.879 54 
C - 37.787 70 NO -129.745 44 C,H,* - 76.775 99 
N - 54.520 47 o, -150.154 12 C,H,* - 78.035 78 
O - 74.985 42 H:0: -151.371 11 CO* -112.668 27 
F - 99.636 50 F: -199.328 61 N2* S -108.828 46 
Na - 161.846 13 CO; -188.367 39 N,* 2,„ -108.789 21 
Mg - 199.646 80 Na2 -323.724 65 O:* -149.710 73 
Al -241.934 37 Si, - 577.991 45 P:* -681.440 92 
Si - 288.936 96 P: -681.82712 Si- -795.132 44 
P - 340.820 83 S, -795.470 03 Ci:' -919.025 78 
S - 397.659 24 Cl: - 919.448 32 CIF - 558.945 72 
Cl - 459.681 96 NaCI -621.688 06 CS* - 435.299 88 
UH - 8.024 58 SiO - 364.221 42 C - 37.830 79 
BeH -15.196 81 CS -435.719 00 O - 75.034 14 
CH -38.417 42 SO - 472.832 65 F - 99.757 33 
CH2 c'a,) - 39.072 99 CIO - 534.761 32 sr - 288.985 54 
CH,('A,) - 39.064 65 CIF - 559.409 97 p - 340.845 64 
CH, - 39.750 55 CH,CI - 499.561 69 s - 397.733 10 
CH, -40.417 53 CH,SH -438.157 56 cr -459.813 71 
NH -55.146 28 HCIO -535.413 69 CH -38.458 13 
NH: - 55.793 66 SO, -548.017 80 CH: - 39.097 74 
NH, - 56.459 90 U* -7.235 48 CH, -39.746 83 
OH - 75.648 00 Be* -14.276 33 NH -55.155 76 
H2O - 76.335 11 B* - 24.302 62 NH, -55.818 85 
HF - 100.351 75 C* - 37.376 30 OH -75.710 03 
SiH - 289.551 47 N* - 53.988 96 SiH - 289.594 64 
SiH; ('Ai) -290.174 07 O* - 74.487 11 SiH, - 290.210 80 
SiH, ("B,) -290.135 05 r -98.997 17 SiH, - 290.833 79 
SiH, - 290.779 45 Na' -161.664 29 PH -341.469 33 
SiH, -291.426 23 Mg* -199.364 00 PH, -342.101 37 
PH -341.433 56 Al* -241.714 52 SH - 398.376 95 
PH, - 342.055 58 Si* - 288.638 94 O, -150.166 96 
PH, - 342.686 50 P* - 340.437 98 NO -129.738 67 
SH - 398.293 10 S' - 397.283 00 CN -92733 57 
H:S - 398.937 52 CI* - 459.209 24 PO -416.059 25 
HCI - 460.346 60 CH,* - 39.950 47 PO -416.026 14 
U, -14.907 44 NH,* - 56.089 40 S% - 795.528 91 
U'F - 107.289 57 OH* -75.170 82 Cl: - 919.529 20 
C:H: -77.192 53 H,0* - 75.872 09 NH,- - 56.787 75 
CjH, - 78.424 51 HF* -99.76295 H,0* - 76.591 87 
CN - 92.588 48 SiH,* -291.019 88 C:H,- - 77.438 32 
HCN - 93.289 91 PH* -341.062 76 SiH,* -291.669 63 
CO -113.183 63 PH,* -341.697 91 PH,' -342.982 17 
HCO - 113.703 95 PH,* - 342321 85 H,S* - 399.205 03 

H,CI* -460.559 24 

'Corresponding to MRCI+Q/6-311+(3df,2p) + ZPVE + HLC. 
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Table (F.IO) MR-G3/ MRCI+Q total energies (in Hartrees)/ 

Soecies Energy Soecies Energy Soecies Energy 
H -0.502 73 HCHO -114.364 97 SH* -97.931 19 
Li - 7.434 92 CHjOH -115.565 27 H,S* (2a,) - 398.573 02 
Be -14.627 03 N, - 109.417 62 H,S* (ZA,) - 398.488 62 
B - 24.610 57 N,H, - 111.71291 HCI* - 459.899 41 
C - 37.795 44 NO - 129.764 50 C,H,* -76.79246 
N - 54.530 25 0, -150.176 75 CjH,* - 78.059 25 
O - 74.994 65 H,0, -151.396 62 CO* - 112.682 80 
F -99.644 99 F, -199.353 10 N,*S - 108.845 04 
Na -161.848 85 CO, -188.393 14 N,* 2.„ - 108.805 76 
Mg - 199.649 74 Na, - 323.729 40 O,* - 149.730 22 
AI -241.940 45 Si, -578.012 55 P:" -681.466 28 
Si - 288.946 22 p2 -681.854 13 S,* - 795.163 50 
P - 340.834 51 S, - 795.505 27 CI,* -919.063 11 
S - 397.674 76 CI, -919.487 90 CIF* - 558.974 04 
CI - 459.698 78 NaCI -621.710 72 CS* - 435.322 69 
LiH -8.029 14 SiO - 364.243 40 C - 37.839 57 
BeH -15.204 68 CS -435.742 90 O - 75.040 10 
CH - 38.428 52 SO -472.862 20 F - 99.761 46 
CH, (3e,) - 39.087 59 CIO - 534.791 82 sr - 288.997 32 
CH; ('A,) - 39.076 39 CIF - 559.439 79 p -340.861 92 
CH, - 39.766 11 CH,CI -499.593 17 s - 397.750 34 
CH, - 40.433 91 CH,SH -438.190 59 CI - 459.829 71 
NH -55.160 16 HCIO - 535.445 36 CH - 38.471 13 
NH; -55.808 19 SO, - 548.055 57 CH, -39.111 42 
NH, - 56.475 54 Li* - 7.235 84 CH, - 39.761 80 
OH - 75.661 88 Be* - 14.279 06 NH - 55.168 29 
H,0 - 76.349 92 B* - 24.305 51 NH, - 55.832 71 
HF - 100.364 97 C* - 37.381 61 OH -75.722 21 
SiH - 289.564 69 N* - 53.996 71 SiH -289.611 93 
SiH, ('At) -290.188 78 O* - 74.496 68 SiH, -290.229 77 
SiH, ^B,) -290.152 17 F* - 99.006 88 SiH, - 290.854 12 
SiH, - 290.798 07 Na* -161.664 29 PH -341.490 56 
SiH, -291.446 31 Mg* -199.366 73 PH, - 342.123 33 
PH -341.452 04 AI* -241.717 49 SH - 398.399 47 
PH, - 342.075 02 Si* - 288.645 59 o, - 150.189 16 
PH, - 342.706 86 P* - 340.449 95 NO - 129.760 20 
SH -398.313 42 S* - 397.296 21 CN -92.751 15 
H,S - 398.958 77 CI* -459.225 33 PO" -416.088 80 
HCI - 460.368 00 CH,* -39.965 83 PO -416.051 71 
Li, -14.91210 NH,* -56.104 80 s, - 795.566 88 
LiF -107.301 65 OH* - 75.184 62 CI, - 919.575 36 
C,H, -77.21289 H,0* - 75.886 49 NH,* - 56.804 27 
C,H, - 78.449 00 HF* - 99.776 22 H,0* -76.60713 
CN - 92.605 40 SiH,* -291.038 15 C,H," -77.457 79 
HCN - 93.308 46 PH* -341.077 30 SiH,* -291.689 27 
CO -113.199 65 PH,* -341.713 24 PH,* - 343.001 99 
HCO - 113.723 51 PH,* -342.340 68 H,S* - 399.225 30 

H,CI* - 460.579 85 

'Corresponding to MRCI+Q/G3MP21arge + DE(SO) + ZPVE + HLC. 
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Table (F.ll) G2/MP2 total energies (in Hartrees).3 

Soecies Energy Soecies Enerqv Soecies Enerqv 

H -0.500 00 HCHO -114.306 70 SH* - 397.877 74 
U - 7.432 22 CHjOH - 115.495 30 H,S* (2e,) -398.513 00 
Be -14.604 29 N, -109.373 23 HzS* (2A,) - 398.428 12 
B - 24.579 70 N,H, -111.639 94 HCI* -459.840 41 
C - 37.761 67 NO -129.711 53 C,HZ* - 76.727 54 
N - 54.499 37 O, -150.125 81 C,H,* - 77.982 24 
O - 74.961 67 H,0, -151.333 52 CO* -112.627 90 
F -99.615 61 F, -199.295 56 N2*2.„ -108.807 18 
Na -161.846 17 co2 -188.335 55 N2* L - 108.745 27 
Mg -199.634 32 Na, -323.714 31 O,' -149.695 09 
Al -241.914 43 Si2 - 577.936 03 P;* -681.384 10 
Si -288.912 33 P2 -681.778 06 S2* - 795.077 06 
P - 340.796 32 s2 -795.416 19 Cl2* - 918.964 53 
S - 397.626 83 Cl, -919.387 59 CIF* - 558.898 07 
Cl - 459.646 88 NaCI -621.653 55 CS* - 435.223 45 
UH -8.013 28 SiO -364.193 71 c - 37.807 46 
BeH -15.183 32 CS - 435.669 55 0 -75.014 07 
CH - 38.383 35 SO -472.794 12 F - 99.749 88 
CH2 (3B,) 
CH,  ( 'A , )  

-39.045 16 CIO - 534.703 65 sr - 288.962 18 CH2 (3B,) 
CH,  ( 'A , )  - 39.025 50 CIF - 559.366 20 p -340.814 92 
CH, -39.717 22 CH,CI - 499.502 54 s - 397.699 72 
CH, - 40.380 74 CH,SH - 438.093 78 cr - 459.783 21 
NH -55.117 96 HCIO - 535.365 60 CH - 38.428 46 
NH; - 55.763 57 SO, - 547.983 94 CH2 - 39.065 51 
NH, - 56.435 24 Li' - 7.235 84 CH, -39.718 45 
OH - 75.622 78 Be* -14.276 39 NH -55.128 94 
H2O -76.315 34 B* - 24.276 02 NH2 - 55.796 82 
HF -100.338 04 C* - 37.347 93 OH - 75.698 24 
SiH - 289.518 89 N" - 53.962 86 SiH" - 289.561 57 
SiH, { 'A , )  -290.134 16 O' -74.467 93 SiH, -290.170 90 
SiH, fB,) -290.104 03 F* - 98.975 49 SiH, - 290.787 92 
SiH, - 290.741 46 Na' -161.664 29 PH" -341.432 28 
SiH, -291.381 83 Mg' -199.364 08 PH, - 342.060 29 
PH -341.399 23 Al* -241.700 44 SH - 398.341 36 
PH, -342.015 04 Si* -288.616 96 O," - 150.138 78 
PH, - 342.641 13 P* - 340.411 65 NO - 129.706 03 
SH - 398.254 71 S' -397.257 15 CN -9270413 
H,S - 398.896 23 Cl* -459.175 44 PO -416.027 62 
HCI -460.310 00 CH,* -39.915 97 PO -415.991 79 
u2 -14.894 74 NH,* - 56.058 08 S," - 795.475 61 
UF - 107.275 37 OH* -75.144 28 Cl," -919.475 64 
C,H, -77.152 73 H2O* - 75.845 19 NH,* - 56.756 20 
C,H, - 78.371 05 HF* - 99.739 89 H,0* - 76.573 63 
CN - 92.530 56 SiH,* - 290.981 59 C,H,* - 77.393 52 
HCN -93.258 99 PH* -341.027 53 SiH,* -291.625 07 
CO -113.153 50 PH2* -341.656 38 PH,* - 342.938 28 
HCO -113.670 15 PH,* - 342283 35 H,S* 

H2CI* 
-399.160 89 
- 460.518 79 

'Corresponding to MP2/6-311+(3df,2p) + ZPVE + HLC. 
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Table (F.12) G3/MP2 total energies (in Hartrees)/ 

Soecies Enerqv Soecies Enerqv Soecies Enerqv 

H -0.501 72 HCHO -114.31515 SH* - 397.887 01 
U - 7.433 92 CHiOH -115.506 54 HzS* (2B,) - 398.523 93 
Be -14.608 92 N: -109.380 30 HzS* (2A,) - 398.439 30 
B - 24.585 80 N,H, -111.651 77 HCI* - 459.851 97 
C -37.76914 NO -129.717 57 CzH,* -76.735 87 
N -54.507 85 O: -150.133 17 CzH,* -77.99291 
O - 74.972 54 H:0, -151.344 35 CO' -112631 48 
F -99.628 59 F: -199.305 36 N,' , - 108.812 62 
Na -161.847 88 CO: - 188.344 30 Nz* 2,„ - 108.750 89 
Mg - 199.639 10 Na2 -323.717 00 O,' - 149.701 82 
Al -241.921 52 Si: - 577.947 13 Pz* -681.399 43 
Si - 288.921 87 P2 -681.795 66 Sz* - 795.096 20 
P - 340.809 24 Sz - 795.436 90 Cl:* -918.987 93 
S - 397.644 26 Cl2 -919.413 84 CIF* - 558.911 61 
Cl - 459.667 20 NaCI -621.668 17 CS* - 435.235 63 
UH -8.015 74 SiO - 364.205 52 C -37.815 28 
BeH -15.186 49 CS - 435.683 67 O -75.024 82 
CH -38.387 84 SO - 472.808 38 F - 99.761 51 
CHj (3S,) 
CH; ('A,) 

- 39.050 57 CIO - 534.719 63 Si - 288.973 32 CHj (3S,) 
CH; ('A,) - 39.031 14 CIF - 559.381 82 P - 340.832 87 
CH, - 39.724 13 CHjCI - 499.521 40 S - 397.721 71 
CH. -40.389 02 CH,SH -438.112 92 Cl - 459.807 23 
NH -55.122 60 HCIO - 535.383 19 CH - 38.432 59 
NH: - 55.769 33 SO: - 548.003 16 CH: - 39.070 69 
NH, - 56.442 57 Li- - 7.235 84 CH, - 39.725 14 
OH -75.627 84 Be* - 14.278 10 NH -55.132 90 
H2O - 76.321 68 B* - 24.280 69 NH: - 55.802 32 
HF -100.342 85 C* -37.354 04 OH -75.70211 
SiH - 289.524 80 N* - 53.970 36 SiH - 289.569 82 
SiH; ('A,) -290.143 00 O* - 74.476 17 SiH: -290.181 25 
SiH, rB,) -290.112 04 r - 98.986 76 SiH, - 290.800 27 
SiH, - 290.751 52 Na* -161.664 29 PH -341.444 78 
SiH, -291.393 89 Mg- - 199.365 79 PH: - 342.074 25 
PH -341.408 65 Al* -241.705 42 SH - 398.356 10 
PH: - 342.025 95 Si* - 288.624 90 O: - 150.146 08 
PH, - 342.653 57 P* - 340.423 77 NO -129.712 06 
SH - 398.266 54 S* - 397.269 61 CN - 92710 94 
HzS - 398.909 66 Cl* - 459.193 67 PO -416.041 36 
HCI - 460.323 62 CH,* - 39.922 68 PO -415.995 88 
Li: -14.897 25 NH,* - 56.064 66 Sz - 795.499 61 
UF -107.279 60 OH* - 75.148 73 Cl: -919.504 11 
CïH, -77.16243 HjO* - 75.850 72 NH,* - 56.764 36 
QzH, -78.383 1 5 HF - 99.744 25 H,0* - 76.580 51 
CN -92.536 46 SiH,* - 290.991 29 CzH,* -77.402 49 
HCN -93.266 96 PH* -341.035 68 SiH,* -291.636 68 
CO -113.158 97 PH:* -341.665 90 PH,* -342950 32 
HCO -113.676 63 PH,* - 342.293 79 H,S' 

H2cr 
- 399.173 44 
- 460.531 69 

•"Corresponding to MP2/G3MP21arge + DE(SO) + ZPVE + HLC. 
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Table (F.13) MR-G2/MP2 total energies (in Hartrees)/ 

Soecies Enerqv Soecies Enerqv Soecies Enerqv 

H - 0.500 00 HCHO -114.332 13 SH* - 397.901 87 
Li - 7.432 20 CH,OH -115.527 53 H,S* (2&) - 398.540 71 
Be -14.626 12 N2 - 109.390 61 HzS* (2A,) -398.454 25 
B - 24.601 96 N2H. - 111.67442 HCI* - 459.864 56 
C - 37.781 89 NO - 129.739 29 C,H," - 76.769 21 
N -54.516 32 o2 -150.156 58 C,H«* - 78.025 01 
O - 74.980 67 H2O2 -151.365 09 CO* - 112.662 66 
F - 99.635 00 F2 - 199.331 04 N,* 2- , - 108.823 94 
Na -161.846 13 co2 -188.363 81 N,* 2.„ -108.779 12 
Mg -199.648 72 Na2 - 323.726 92 O,* - 149.705 47 
Al -241.930 13 Si2 - 577.977 21 P,* -681.423 66 
Si - 288.929 01 P: -681.811 19 SÎ* -795.115 04 
P - 340.813 89 S2 - 795.457 92 Cl,* -919.005 30 
S - 397.647 33 Cl, -919.424 85 CIF* - 558.936 32 
Cl -459.667 29 NaCI -621.676 75 CS* - 435.289 08 
LiH - 8.026 74 SiO - 364.205 81 c - 37.831 91 
BeH -15.194 74 CS -435.702 91 0 - 75.035 29 
CH - 38.409 72 SO - 472.828 94 F -99.768 10 
CH; <3a,) - 39.067 28 CIO - 534.749 43 sr - 288.979 55 
CH2 ('A,) - 39.054 34 CIF - 559.398 45 P - 340.835 21 
CH, - 39.742 56 CH,CI - 499.543 74 S - 397.720 22 
CH. - 40.408 06 CH,SH -438.136 61 ci - 459.801 43 
NH -55.140 83 HCIO - 535.397 24 CH - 38.452 81 
NH; - 55.786 44 SO, - 548.018 34 CH, - 39.088 70 
NH, - 56.451 26 Li* - 7.235 48 CH, - 39.735 24 
OH - 75.643 80 Be* -14.276 33 NH -55.151 77 
H2O - 76.329 07 B* - 24.304 71 NH2 - 55.811 87 
HF - 100.353 06 C* - 37.373 85 OH -75.713 73 
SiH - 289.541 56 N* -53.98411 SiH - 289.584 32 
SiH; ('Ai) -290.161 62 O* - 74.483 50 SiH, -290.196 66 
SiH; rs,) -290.125 56 r - 98.993 20 SiH, -290.816 17 
SiH, - 290.767 05 Na* -161.664 29 PH -341.455 97 
SiH, -291.411 58 Mg* -199.364 00 PH, - 342.085 32 
PH -341.423 05 Al* -241.716 42 SH - 398.362 65 
PH, - 342.042 31 Si* - 288.633 90 O, - 150.173 43 
PH, - 342.670 16 P* -340.429 11 NO - 129.744 04 
SH - 398.278 75 S* - 397.275 14 CN -92.723 73 
H2S - 398.921 39 Cl* - 459.196 28 PO -416.060 21 
HCI - 460.331 29 CH,* - 39.943 61 PO -416.014 30 
U2 - 14.909 71 NH,* - 56.083 77 S, - 795.514 71 
UF -107.288 04 OH* -75.166 64 Cl, -919.517 65 
CaH2 -77.186 29 H,O* - 75.866 84 NH,* -56.78206 
C,H, -78.413 89 HF* - 99.759 90 H,0* - 76.585 93 
CN - 92.582 51 SiH,* -291.009 89 C,H,* - 77.431 03 
HCN - 93.281 48 PH* -341.052 47 SiH,* -291.657 92 
CO -113.172 22 PH2* -341.685 29 PH," -342967 98 
HCO - 113.694 60 PH,* - 342.310 22 H,S* - 399.189 84 

H,Cl* - 460.543 42 

'Corresponding to CASPT2/6-311+G(3df,2p) + ZPVE + HLC. 
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Table (F. 14) MR-G3/MP2 total energies (in Hartrees).a 

Species Energy Soecies Energy Soecies Energy 

H - 0.501 73 HCHO -114.349 65 SH* -397.915 78 
U - 7.433 92 CH,OH -115.549 47 HzS* (2B,) - 398.556 94 
Be -14.630 21 N, - 109.405 11 HiS ' fA , )  - 398.470 74 
B - 24.607 41 N:H, -111.696 69 HCI* - 459.881 42 
C - 37.788 61 NO -129.753 29 C,H,* - 76.781 30 
N - 54.523 93 O, -150.172 26 CjH,* -78.043 92 
O - 74.990 03 H:0, -151.386 34 CO* - 112.673 03 
F - 99.645 91 F: -199.351 32 N,*2-, -108.836 24 
Na - 161.847 86 CO: -188.384 47 N,* 2.„ -108.791 46 
Mg -199.652 86 Na, - 323.731 09 o,* -149.720 03 
Al -241.936 62 Si: - 577.994 03 P,* -681.445 84 
Si - 288.938 00 P: -681.836 17 S:* -795.14249 
P - 340.826 33 S: - 795.487 82 Cl,* -919.038 54 
S - 397.663 71 Cl: -919.461 57 CIF* - 558.959 73 
Cl - 459.687 13 NaCI -621.697 32 CS* - 435.308 21 
UH -8.030 70 SiO -364.225 13 C -37.838 14 
BeH -15.200 17 CS - 435.724 37 O - 75.043 74 
CH -38.417 86 SO - 472.852 24 F -99.777 21 
CH, (3S,) - 39.077 11 CIO - 534.774 97 Si" - 288.990 27 
CH: ('*.) - 39.064 49 CIF - 559.424 58 P - 340.852 23 
CH, - 39.754 63 CHjCI - 499.573 05 S" - 397.740 47 
CH, -40.422 29 CHjSH - 438.166 16 Cl" -459.82293 
NH -55.149 76 HCIO - 535.425 28 CH" - 38.460 82 
NH, - 55.797 37 SO: - 548.050 85 CH: - 39.098 93 
NH, - 56.464 57 Li* - 7.235 84 CH, -39.748 13 
OH - 75.653 95 Be' -14.278 06 NH -55.160 61 
H:O - 76.341 44 B* - 24.308 81 NH, - 55.823 42 
HF -100.363 85 C' - 37.379 36 OH" -75.723 58 
SiH - 289.552 14 N* - 53.990 99 SiH" - 289.597 38 
SiH: ('>»,) -290.174 77 O* - 74.491 09 SiH, -290.212 41 
SiH, c'a,) -290.138 07 F* -99.003 16 SiH, - 290.834 38 
SiH, - 290.782 19 Na* -161.664 29 PH" -341.473 94 
SiH, - 291.429 30 Mg* -199.365 73 PH, - 342.105 23 
PH -341.437 13 Al* -241.720 61 SH - 398.383 40 
PH, - 342.058 59 Si* - 288.641 12 o, - 150.189 99 
PH, - 342.688 47 P* - 340.440 67 NO" -129.758 43 
SH - 398.295 97 S -397.287 14 CN - 92.738 06 
H:S - 398.940 77 Cl* -459.213 32 PO -416.083 27 
HCI - 460.350 90 CH,* - 39.955 54 PO -416.035 34 
U, - 14.913 80 NH,* - 56.095 58 s, - 795.548 61 
UF -107.298 44 OH* -75.175 53 Cl," -919.559 27 
C,Hj - 77.203 58 H20* - 75.877 59 NH,* -56.796 23 
C,H, - 78.434 95 HF* - 99.769 45 H,0* -76.598 76 
CN - 92.595 10 SiH,' -291.024 70 C,H,* - 77.447 59 
HCN - 93.296 99 PH* -341.064 38 SiH,* -291.675 26 
CO -113.185 17 PH,* -341.69916 PH,' - 342.985 64 
HCO -113.709 32 PH,* - 342.325 76 H,S* - 399.208 21 

H,Cl* -460.562 27 

-Corresponding to CASPT2/G3MP21arge + DE(SO) + ZPVE + HLC. 
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Table (F.15) MR(QD)-G2(MP2,SVP) total energies (in Hartrees). 

Soecies Enerqv Soecies Enerav Soecies Enerqv 

H -0.500 00 HCHO -114.346 31 SH* -397.914 07 

U - 7.432 20 CH,OH -115.547 49 H£' (2B,) - 398.553 81 
Be - 14.626 36 N, -109.409 42 HJS* (2A,) - 398.468 44 
B - 24.606 34 N,H, -111.694 94 HCI" -459.879 06 
C - 37.789 63 NO -129.755 99 C,H,* - 76.777 60 
N - 54.524 52 o, -150.166 71 C,H,* -78.03914 
O -74.990 12 H,0, -151.383 38 CO* -112.67516 
F -99.642 13 F, -199.342 62 N,"2-, -108.837 19 
Na -161.846 13 CO, -188.384 20 N,"L -108.796 99 
Mg -199.649 18 Na, - 323.726 88 O," -149.720 69 
Al -241.935 19 Si, - 577.992 31 P," -681.446 16 
Si - 288.938 40 P, -681.833 87 Ss- -795.138 46 
P - 340.824 79 S, - 795.478 27 CI," -919.030 05 
S - 397.660 57 Cl, -919.452 30 CIF* - 558.953 50 
Cl - 459.681 77 NaCI -621.692 69 CS* -435.304 86 
UH - 8.026 73 SiO - 364.228 65 c - 37.835 88 
BeH - 15.196 54 CS - 435.724 28 o - 75.043 96 
CH - 38.418 56 SO - 472.843 85 F - 99.771 49 
CH, (3S,) - 39.074 33 CIO - 534.769 49 sr - 288.989 74 
CH, ('A,) - 39.064 86 CIF - 559.418 22 p - 340.848 20 
CH, - 39.751 79 CH,CI -499.562 91 s - 397.734 76 
CH. - 40.418 71 CH,SH -438.163 60 cr -459.815 60 
NH -55.150 04 HCIO -535.421 10 CH - 38.458 80 
NH, - 55.796 88 SO, - 548.038 49 CH, - 39.099 58 
NH, -56.463 15 Li- -7.235 84 CH, -39.748 45 
OH -75.653 12 Be" -14.276 34 NH -55.16291 
H,0 - 76.340 08 B* - 24.304 98 NH, - 55.824 65 
HF - 100.358 74 c- - 37.378 72 OH - 75.721 46 
SiH - 289.550 78 N* - 53.992 24 SiH -289.59516 
SiH, ('A,) -290.171 97 o* - 74.490 70 SiH, - 290.208 18 
SiH, (3S,) -290.132 79 F -99.000 56 SiH, - 290.828 85 
SiH, - 290.775 84 Na* -161.664 29 PH -341.469 98 
SiH, -291.421 37 Mg- -199.364 00 PH, - 342.100 59 
PH -341.435 08 Al* -241.716 79 SH -398.377 95 
PH, - 342.054 94 sr - 288.640 37 O, -150.185 41 
PH, - 342.684 01 p- -340.440 17 NO -129.755 50 
SH - 398.293 20 S- -397.286 14 CN - 92742 37 
H,S - 398.936 83 cr - 459.209 39 PO -416.074 35 
HCI - 460.346 55 CH,* - 39.951 80 PO -416.034 30 
U, -14.909 68 NH,* - 56.091 85 S, - 795.538 35 
LiF -107.290 90 OH* -75.174 49 Cl, -919.540 64 
C,H, -77.198 64 H,0* - 75.875 80 NH," -56.79010 
C,H, - 78.423 32 HF* -99.767 43 H,0* -76.59583 
CN - 92.596 17 SiH,* -291.018 61 C,H," -77.445 05 
HCN - 93.295 97 PH* -341.063 07 SiH," -291.666 50 
CO -113.191 67 PH,* -341.696 75 PH,' -342.978 66 
HCO -113.712 70 PH,- - 342319 67 H,S* - 399.204 06 

H,CI* -460.558 79 
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Table (F.16) MR(QD)-G2(MP2) total energies (in Hartrees). 

Soecies Enerqv Soecies Enerqv Soecies Enerqv 

H -0.500 00 HCHO - 114.343 85 SH" -397.913 28 
Li -7.43220 CH,OH -115.546 27 H2S* (2e,) -398.553 11 
Be -14.625 53 N: - 109.404 68 H ,S-(2A,) - 398.465 95 
B - 24.606 96 N,H, -111.692 92 HCI" - 459.877 23 
C - 37.789 99 NO - 129.750 88 C,H,* - 76.777 30 
N - 54.523 42 O, -150.161 38 C,H," - 78.038 59 
O -74.98789 H,0, - 151.377 79 CO* -112.671 93 
F -99.639 40 F; -199.335 36 N:' 2- , - 108.833 50 
Na -161.846 13 CO: - 188.376 57 N," M - 108.792 96 
Mg -199.648 23 Na2 - 323.725 99 o,* - 149.716 01 
Al -241.934 34 Si, - 577.988 67 P,* -681.442 52 
Si -288.937 61 P, -681.829 21 Si- -795.133 97 
P - 340.823 81 S, - 795.473 43 Ci,* -919.024 72 
S - 397.658 82 CI, -919.445 83 CIF" - 558.948 01 
Cl -459.679 07 NaCI -621.688 82 CS* - 435.301 58 
LiH - 8.026 02 SiO - 364.224 89 C - 37.836 25 
BeH -15.198 42 CS - 435.720 77 O - 75.040 23 
CH - 38.419 20 SO - 472838 84 F -99.766 32 
CH, (38,) - 39.075 15 CIO - 534.763 63 sr - 288.989 31 
CH; ('A,) - 39.066 39 CIF -559.411 28 p - 340.848 47 
CH, - 39.753 24 CH,CI - 499.560 26 s - 397.731 71 
CH, - 40.420 67 CH,SH -438.163 54 cr -459.811 23 
NH -55.148 81 HCIO -535.415 11 CH - 38.458 97 
NH, - 55.796 07 SO, - 548.029 23 CH, -39.100 54 
NH, - 56.462 94 Li- - 7.235 48 CH, - 39.749 95 
OH - 75.650 53 Be" -14.276 34 NH -55.160 64 
H20 - 76.337 96 B* - 24.303 99 NH, - 55.823 19 
HF -100.35511 C* - 37.378 21 OH -75.717 59 
SiH - 289.550 84 N* -53.991 19 SiH - 289.595 41 
SiH: ('A,) -290.173 23 o- - 74.489 64 SiH: -290.209 36 
SiH, (*8,) -290.134 14 F- -98.999 35 SiH, - 290.831 28 
SiH, -290.778 67 Na" - 161.664 29 PH -341.468 46 
SiH, -291.426 26 Mg" -199.364 06 PH: - 342.099 35 
PH -341.434 55 Al" -241.715 89 SH - 398.374 80 
PH: -342.05500 sr - 288.639 54 O, -150.178 30 
PH, - 342.685 09 P" - 340.439 42 NO - 129.749 83 
SH -398.291 44 s- - 397.285 96 CN - 92738 78 
H:S - 398.935 27 Cl" -459.208 13 PO -416.069 09 
HCI -460.343 59 CH," - 39.953 19 PO -416.029 56 
u, -14.908 77 NH," - 56.091 89 S: - 795.531 99 
UF -107.290 54 OH* - 75.173 03 CI," -919.539 94 
C,H: -77.196 90 H,0" - 75.874 30 NH,* - 56.790 77 
C,H, -78.430 10 HF* -99.765 06 H,0* - 76.594 67 
CN - 92592 87 SiH," -291.022 08 C,H,* -77.44184 
HCN - 93.292 75 PH* -341.062 75 SiH,* -291.671 44 
CO -113.188 34 PH," -341.697 24 PH," - 342981 99 
HCO -113.709 32 PH," - 342321 26 H,S" - 399.203 81 

H,Cl" - 460.556 78 
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Table (F.17) MR(QD)-G3(MP2) total energies (in Hartrees). 

Species Enerqv Soecies Energy Species Energy 

H -0.501 64 HCHO -114.356 37 SH* -397.927 29 
Li - 7.433 83 CH,OH - 115.561 02 H,S" (2B,) - 398.567 00 
Be - 14.628 12 N, - 109.417 68 H2S* (%,) -398.48204 
B - 24.609 40 N,H, -111.708 42 HCI" - 459.893 08 
C - 37.793 86 NO -129.764 68 C,H," - 76.788 65 
N - 54.529 52 O, -150.177 97 C,H," - 78.052 73 
O - 74.994 63 H,0, -151.395 90 CO" - 112.681 42 
F - 99.645 95 F, - 199.354 12 N," 2' g - 108.845 40 
Na -161.847 76 CO, -188.394 86 N," » - 108.803 81 
Mg -199.650 99 Na, - 323.729 80 O," -149.729 92 
Al -241.939 26 Si, - 578.007 54 P," -681.464 29 
Si - 288.944 87 P, -681.852 66 s," - 795.160 59 
P - 340.834 63 S, - 795.503 72 Cl," -919.056 69 
S -397.67215 Cl, -919.480 25 CIF" - 558.970 31 
Cl - 459.694 58 NaCI -621.708 05 es* - 435.319 91 
LiH - 8.029 44 SiO - 364.241 78 C - 37.839 51 
BeH -15.201 62 CS - 435.739 50 O - 75.045 34 
CH -38.425 15 SO - 472862 71 F -99.771 28 
CH, (3S,) - 39.083 49 CIO - 534.788 42 Si" -288.997 85 
CH, ( 'A , )  - 39.071 29 CIF - 559.435 58 P - 340.860 44 
CH, - 39.761 05 CH,CI - 499.586 54 S - 397.748 00 
CH, - 40.428 01 CH,SH -438.184 20 CI - 459.827 78 
NH -55.158 31 HCIO - 535.440 41 CH - 38.469 55 
NH, - 55.805 00 SO, - 548.059 77 CH, -39.107 04 
NH, - 56.471 42 Li* - 7.235 84 CH, - 39.756 39 
OH - 75.660 43 Be* -14.277 97 NH -55.16890 
H,0 - 76.347 47 B* - 24.306 75 NH, - 55.831 22 
HF - 100.364 51 C" - 37.381 80 OH" - 75.726 31 
SiH - 289.559 75 N" - 53.996 60 SiH - 289.607 50 
SiH, ('A,) -290.181 33 O* - 74.495 68 SiH, - 290.221 03 
SiH, (JB,) - 290.144 58 F* - 99.005 65 SiH, - 290.841 94 
SiH, -290.788 10 Na* -161.664 29 PH" -341.485 10 
SiH, -291.434 06 Mg* -199.365 63 PH, -342.115 42 
PH -341.448 48 Al* -241.718 65 SH - 398.393 64 
PH, - 342.068 38 Si" -288.645 17 O, -150.195 39 
PH, -342.697 26 P" - 340.449 24 NO - 129.765 47 
SH - 398.307 59 S" - 397.295 56 CN -9275046 
H,S - 398.951 18 Cl* - 459.221 62 PO -416.092 97 
HCI -460.361 13 CH," - 39.960 90 PO -416.050 01 
U, -14.912 50 NH," - 56.100 82 S, - 795.565 66 
LiF - 107.296 31 OH" - 75.182 70 Cl, -919.572 48 
C,H, -77.210 74 H,0" - 75.883 69 NH,* -56.79923 
C,Hj - 78.436 93 HF* -99.774 10 H,0* - 76.603 63 
CN - 92.604 66 SiH," -291.028 37 C,H," - 77.455 51 
HCN -93.30519 PH* -341.073 40 SiH,* -291.678 82 
CO - 113.198 38 PH," -341.706 86 PH,* - 342.991 32 
HCO - 113.722 06 PH," - 342332 36 H,S* -399.217 40 

H,Cl* - 460.572 61 
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Table (F.18) MR(QD)-G2/MP2 total energies (in Hartrees)/ 

Soecies Enerqv Soecies Enerqv Soecies Enerqv 

H -0.500 00 HCHO -114.332 35 SH* - 397.903 92 
U - 7.432 20 CH,OH -115.528 14 H,S* (2B,) - 398.542 62 
Be -14.626 75 N, - 109.393 93 H,S* (2A,) - 398.454 31 
B - 24.602 74 N2H, - 111.677 07 HCI* - 459.866 88 
C -37.782 99 NO - 129.744 19 C,H," - 76.766 89 
N -54.517 38 o, -150.162 59 C,H," - 78.024 90 
O - 74.982 44 H,0, - 151.373 12 CO* -112.666 27 
F - 99.637 21 F, -199.338 17 N,*2-, -108.827 50 
Na - 161.846 13 CO, -188.374 03 N,'2. -108.781 80 
Mg - 199.649 35 Na, - 323.727 55 o," -149.710 37 
Al -241.930 84 SI, - 577.981 41 P," -681.427 57 
Si - 288.930 28 P, -681.815 44 S," -795.119 44 
P -340.815 28 S, - 795.462 81 Cl,* -919.010 26 
S - 397.649 53 Cl, -919.429 84 CIF* - 558.942 09 
Cl - 459.669 83 NaCI -621.682 71 CS* -435.291 64 
U'H - 8.027 31 SiO - 364.206 06 C - 37.828 91 
BeH - 15.194 70 CS - 435.706 58 O - 75.037 43 
CH -38.410 37 SO - 472835 03 F - 99.770 64 
CH, ("B,) 
CH2 Ca,) 

- 39.068 04 CIO - 534.754 63 sr - 288.980 72 CH, ("B,) 
CH2 Ca,) - 39.054 77 CIF - 559.404 24 p - 340.837 26 
CH, - 39.743 05 CH,CI - 499.543 08 s - 397.722 68 
CH, - 40.407 93 CH,SH -438.143 50 cr -459.803 97 
NH -55.142 83 HCIO -535.403 18 CH - 38.450 60 
NH, - 55.788 70 SO, - 548.031 22 CH, - 39.089 96 
NH, - 56.452 48 Li- - 7.235 84 CH, - 39.735 78 
OH - 75.647 05 Be" -14.276 34 NH -55.154 27 
H2O -76.332 95 B* - 24.305 34 NH, -55.814 92 
HF - 100.357 77 C* - 37.374 67 OH -75.717 76 
SiH - 289.541 71 N* -53.985 16 SiH - 289.585 41 
SiH2 ('/*,) -290.161 35 O* - 74.484 62 SiH: -290.196 25 
SiH, (3B,) -290.124 91 F* - 98.994 96 SiH," -290.814 35 
SiH, - 290.765 70 Na" -161.664 29 PH -341.457 07 
SiH, -291.409 63 Mg" -199.364 00 PH, - 342.085 06 
PH -341.425 12 Al" -241.717 05 SH - 398.363 86 
PH, - 342.043 17 sr - 288.634 79 o, -150.180 82 
PH, - 342.669 80 p" - 340.430 43 NO -129.750 92 
SH - 398.280 52 S* - 397.276 45 CN - 92727 20 
H,S -398.92213 Cl* - 459.198 52 PO- -416.067 24 
HCI - 460.333 34 CH," - 39.943 95 PO -416.019 06 
U, - 14.910 35 NH," - 56.084 98 S, - 795.520 01 
UF -107.288 29 OH* - 75.169 23 Cl, -919.524 54 
C,H, -77.186 81 H,0* - 75.869 84 NH,* - 56.781 56 
C,H, -78.414 42 HF* -99.764 26 H,0* -76.587 34 
CN - 92.586 11 SiH," -291.010 06 C,H," - 77.431 73 
HCN - 93.282 96 PH" -341.052 92 SiHs* -291.656 67 
CO - 113.174 79 PH," -341.685 35 PH,* - 342965 60 
HCO -113.697 62 PH," - 342309 03 H,S* 

H,Cl* 
- 399.190 77 
- 460.545 60 

'Corresponding to MRQDPT2/6-311+G(3df,2p) + ZPVE + HLC. 
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Table (F. 19) MR(QD)-G3/ MP2 total energies (in Hartrees).3 

Species Enerav Species Enerqv Species Enerav 

H - 0.501 57 HCHO -114.347 52 SH* -397.917 07 
U - 7.433 75 CHIOH -115.547 63 HZS* (28,) -398.557 49 
Be -14.630 29 N2 - 109.406 46 HÎS* CA,) - 398.469 58 
B - 24.607 50 N2H. -111.696 52 HCI* -459.882 57 
C - 37.788 85 NO -129.756 26 C2H2* - 76.780 46 
N - 54.523 94 o2 - 150.176 34 C2H,* - 78.041 86 
O - 74.990 35 H2O2 - 151.391 61 CO* -112.675 05 
F - 99.646 28 F2 -199.355 64 N2*2-„ -108.838 23 
Na -161.847 69 co2 - 188.391 52 N2*2„ - 108.791 15 
Mg - 199.652 93 Na2 - 323.731 32 o2* -149.722 99 
Al -241.936 61 Si2 -577.997 43 p2* -681.448 23 
Si - 288.938 38 P2 -681.838 50 s2- -795.144 95 
P - 340.826 67 S, - 795.490 76 Cl," - 919.041 14 
S - 397.664 52 Cl2 - 919.463 76 CIF* -558.963 13 
Cl -459.687 89 NaCI -621.701 48 es* - 435.309 22 
LiH - 8.030 87 SiO - 364.223 45 c - 37.834 09 
BeH -15.199 75 es - 435.726 07 o - 75.044 06 
CH -38.417 79 SO - 472.856 39 F - 99.777 53 
CH, (38i) - 39.077 14 CIO - 534.777 79 sr - 288.990 39 
CH2 CA,) - 39.063 76 CIF - 559.427 57 p -340.852 90 
CH, - 39.753 98 CH,CI - 499.572 68 s - 397.741 17 
CH, - 40.420 64 CHISH -438.170 07 Cl - 459.823 24 
NH -55.151 03 HCIO - 535.428 46 CH - 38.461 28 
NH2 - 55.798 49 so2 - 548.060 19 CH2 - 39.099 09 
NH, - 56.464 16 Lj* -7.235 84 CH, -39.74713 
OH - 75.656 03 Be* -14.277 90 NH -55.161 93 
H2O - 76.343 74 B" - 24.308 89 NH, - 55.824 90 
HF -100.366 95 C - 37.379 46 OH -75.726 02 
SiH - 289.551 50 N* -53.991 14 SiH - 289.597 69 
siH, CA,) -290.173 27 O* - 74.491 14 SiH,' -290.210 76 
SiH, Ce,) -290.136 63 F* -99.003 46 SiH, - 290.830 86 
SiH, - 290.779 64 Na* - 161.664 29 PH -341.473 86 
SiH* -291.425 74 Mg* -199.365 56 PH, - 342.103 30 
PH -341.438 45 Al* -241.720 69 SH - 398.382 97 
PH, - 342.058 28 Si* - 288.641 28 O, -150.195 03 
PH, - 342.686 47 P* - 340.441 12 NO -129.763 39 
SH - 398.296 58 S* - 397.287 42 CN - 92.739 55 
H;S -398.939 89 Cl* -459.214 14 PO - 416.088 35 
HCI - 460.351 33 CH,* -39.954 72 PO -416.03815 
u2 -14.914 03 NH,* - 56.095 63 S, - 795.551 55 
UF -107.297 10 OH* - 75.177 37 Cl, - 919.561 47 
C,H2 -77.20316 H2O* - 75.879 41 NH,* - 56.794 10 
CÎHi  -78.43315 HF* -99.772 60 H,0* - 76.598 54 
CN -92.59713 SiH,* -291.021 49 C2H,* - 77.446 45 
HCN - 93.296 44 PH* -341.064 07 SiHs* -291.672 39 
CO -113.185 77 PH2* -341.698 02 PH,* - 342.981 67 
HCO -113.710 36 PH,* - 342.323 39 H,S* - 399.207 52 

H,Cl* - 460.562 83 

•"Corresponding to MRQDPT2/G3MP21arge + DE(SO) + ZPVE + HLC. 
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